• Title/Summary/Keyword: 토양 화학성

Search Result 540, Processing Time 0.026 seconds

Effect of Phosphate Solubilizing Bacteria Application on Soil Chemical Properties and Chrysanthemum Growth in Greenhouse Cultivation Area with High Salt Accumulation (염류집적 국화 시설재배지 토양에서 인산분해미생물 시용이 토양화학성 및 국화생육에 미치는 영향)

  • Lee, Sang-Hyun;Joung, Youn-Hwa;Han, Tae-Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.3
    • /
    • pp.144-150
    • /
    • 2011
  • This study was carried out to develop the soil amendment practice by phosphate solubilizing bacteria application in greenhouse chrysanthemum cultivation area with high salt accumulation. The experimental site (ShinWoo Flower, GwangJu) has been cultivated chrysanthemum for 15 years and showed significant salt accumulation. The phosphate solubilizing bacteria, Pseudomonas putida (KSJ11), Acinetobacter calcoaceticus (KSJ3) and Acinetobacter calcoaceticus (WP20) formulated on vermiculite for easy use, were applicated. Each 250L of phosphate solubilizing bacteria was applied for $82m^2$ before planting. Acinetobacter calcoaceticus (KSJ3; WP20) increased the amount of soluble phosphorus in an effective level. Particularly, Acinetobacter calcoaceticus (WP20) increased not only the level of soluble phosphorus but also potassium, calcium and magnesium resulting in the increase of EC in the soil. The level of nematode was also decreased with the non-treated increased. As a result, we suggest that selected phosphate solubilizing bacteria (WP20) could be a useful practice for soil amendment in chrysanthemum plantation soil and provided an opportunity to reduce the use of the fertilizer during the cultivation period.

Characteristics of Fertility on Strawberry Cultivated Soil of Plastic Film House in Chungnam Province in Korea (충남지역 시설 딸기재배 토양 비옥도 특성)

  • Choi, Moon-Tae;Lee, Jin-Il;Yun, Yeo-Uk;Lee, Jong-Eun;Lee, Bong-Chun;Yang, Euy-Seog;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.160-165
    • /
    • 2010
  • To reduce the dose of fertilizers is very important to sustainable production of many horticultural crops, including strawberry. In order to practice the environment friendly agriculture of strawberry cultivation in plastic film house, soil chemical properties of 435 soil samples (232 for loam, 83 for sandy loam, and 120 for silt loam) in Chungnam Province from2008 to 2009 were determined. The average of pH, EC, OM, Av. $P_2O_5$, Ex. $K^+$, Ex. $Ca^{2+}$, Ex. $Mg^{2+}$, and Ex. $Na^+$ was 6.5, 2.28 dS $m^{-1}$, 26 g $kg^{-1}$, 910 mg $kg^{-1}$, 1.09 $cmol_c\;kg^{-1}$, 8.3 $cmol_c\;kg^{-1}$, 2.5 $cmol_c\;kg^{-1}$, and 0.58 $cmol_c\;kg^{-1}$, respectively. The content of Av. $P_2O_5$ in sandy loam soil was significantly higher than silt loam soil, whereas other properties showed no difference between soil texture. The kinds of strawberry cultivars showed no difference in soil chemical properties. The frequency distribution within optimum range of soil chemical properties was 30.6%, 35.4%, 37.0%, 5.3%, 8.5%, 8.5%, and 17.9% for pH, EC, OM, Av. $P_2O_5$, Ex. $K^+$, Ex. $Ca^{2+}$, and Ex. $Mg^{2+}$, respectively. Especially, excessive portion of Av. $P_2O_5$, and Ex. $Ca^{2+}$ were high 86.9%, and 86.0%, respectively. EC values of soil samples were significantly positive correlatoin with all chemical properties except soil pH. In principle component analysis of chemical properties in soil samples, the percentage of variance explained by PC 1 was 38.8%, while PC 2 explained 17.8%of the variance, for a cumulative total of 56.6%. These results were able to distinguish between soil textures and strawberry cultivars. Also, these results considered that understanding of soil chemical properties under using principal component analysis be able to improve amounts of fertilizers for sustainable agriculture in plastic film house.

Fertility Evaluation of Upland Fields by Combination of Landscape and Soil Survey Data with Chemical Properties in Soil (토양 화학성과 지형 및 토양 조사자료를 활용한 밭 토양의 비옥도 평가)

  • Hong, Soon-Dal;Kim, Jai-Joung;Min, Kyong-Beum;Kang, Bo-Goo;Kim, Hyun-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.221-233
    • /
    • 2000
  • Evaluation method of soil fertility by application of geographic information system (GIS) which includes landscape characteristics and soil map data was investigated from productivities of red pepper and tobacco grown on the fields with no fertilization. Total 131 fields experiments, 64 fields of red pepper and 67 fields of tobacco were conducted from 22 and 23 fields for red pepper and tobacco, respectively, located at Cheangweon and Eumseong counties in 1996, from 20 and 25 fields at Boeun and Goesan counties in 1997, and 22 and 19 fields at Jincheon and Chungju counties in 1998. All the experimental sites were selected on the basis of wide range of distribution in landscape and soil attributes. Dry weights and nutrients (N, P and K) uptakes by red pepper plant and tobacco leaves were considered as basic fertility of the soil (BFS). The BFS was estimated by twenty-five independent variables including 13 chemical properties and 12 GIS data. Twenty-five independent variables were classified by two groups, 15 quantitative variables and 10 qualitative variables, and were analyzed by multiple linear regression (MLR) of REG and GLM models of SAS. Dry weight of red pepper (DWRP) and dry weight of tobacco leaves (DWTL) every year showed high variations by five times in difference plots with minimum yield and maximum yield indicating the diverse soil fertility among the experimental fields. Evaluation for the BFS by the MLR including independent variables was better than that by simple regression showing gradual improvement by adding chemical properties, quantitative variables, and qualitative variables of the GIS. However the evaluation for the BFS by the MLR showed the better result for tobacco than red pepper. For example the variability in the DWTL by MLR was explained 34.2% by only chemical properties, 35.0% by adding quantitative variables, and 72.5% by adding both the quantitative and qualitative variables of the GIS compared with 21.7% by simple regression with $NO_3-N$ content in soil. Consequently, it is assumed that this approach by the MLR including both the quantitative and qualitative variables was available as an evaluation model of soil fertility for upland field.

  • PDF

Effects of Application of Animal Feces to the Mulberry Field on the Chemical Properties and Mulberry Yield (가축 분뇨의 사용이 사질뽕밭의 화학성 및 수엽량에 미치는 영향)

  • Chu, Jae-Won;Kim, Nak-Sang;Yu, Geun-Seop
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.1
    • /
    • pp.8-14
    • /
    • 1992
  • To investigate the effects of applying animal feces to the mulberry field on the chemical properties and mulberry leaf yield, poultry, pig and cattle feces were applied to the mulberry field making-up the sand loam from 1988 to 1990. The chemical properties of the mulberry field have been improved by the application of the poultry, the pig, and the cattle feces, increasing pH level, organic matter, P2O5 and exchangeable cation, especially Mg and K. Applying the pig feces and poultry feces to the mulberry field increased leaf yield during autumn rearing season, but not increased during spring rearing season. Applying animal feces to the mulberry field increased the content of total-cargbohydrate in the leaf in autumn.

  • PDF

Relationship Between Changes of Soil Chemical Properties due to Submergence and Paddy Rice Yield (담수(湛水)에 의한 토양화학성(土壤化學性) 변화(變化)와 수도수량(水稻收量)과의 관계(關係))

  • Ahn, Yoon-Soo;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.194-200
    • /
    • 1985
  • To find out the relationships between the changes of soil chemical properties due to submergence and paddy rice yield, a laboratory and 9 field experiments on 9 soil series were carried out. From the field experiments, relative yields of no fertilizer yield to maximum yield were widely distrbuted from 54 to 76, although the correlation between no fertilizer yields and maximum yields was significant. Among the chemical ingredients of submerged soil, $NH_4-N$ only showed significant correlation with no fertilizer yields. From the laboratory experiments, pH were much increased in the soils high in no fertilizer yield than the others. There were no significant correlation between $NH_4-N$ contents of submerged soils and organic matters of dry soils. Soils low in available $P_2O_5$, low in organic matter, and high in clay of dry soil were negligible in increments of available $P_2O_5$ due to submergence, and efficiency of phosphorous fertilizer in those soils were remarkable. Soils extremely high in available $SiO_2$ of dry sail decreased in available $SiO_2$ due to submergence.

  • PDF

Effect of Different Cropping System and Soil Management on Soil Chemical and Microbiological Quality Assessment in the Daekwanryung Upland Soil (대관령(大關嶺) 지역에서 작부체계 및 토양관리 방법의 차이가 토양화확성 및 미생물상에 미치는 영향)

  • Yun, Sei-Young;Kim, Jeong-Je;Yang, Jae-Wei;Jung, Yeong-Sang;Choi, Joong-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.312-318
    • /
    • 1999
  • These experiments were conducted to determine the effects of soils treated with different soil management, methods, fertilizers and crops on soil microflora and its number for constructing the environmentally sound agriculture modeling of the upland soils. These experiments show that physico-chemical soil characteristics was different in upland soils treated with different soil managements and fertilizers applied. Also soil microflora and its number were effected from crops cultivated with different soil managements in these experiments. The number of Erwinia sp. in chinese cabbage cultivated field on Daekwanryung especially was apparently increased in soil cultivated with potato relative to corn. It was appeared that the number of Fusarium sp. in soil was more effected from kind of fertilizer applied than crops cultivated.

  • PDF

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil (Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향)

  • Oh, Sung-Dug;Ahn, Byung-Ohg;Kim, Min-Kyeong;Sohn, Soo-In;Ryu, Tae-Hun;Cho, Hyun-Suk;Kim, Chang-Gi;Back, Kyoung-Whan;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

Correlation of Soil Physical Properties and Growth of Turfgrass on the Ground of Olympic-mainstadium (Olympic 주경기장 지반 상토층의 토양 물리성과 잔디 생육의 상관관계)

  • 김인철;주영규;이정호
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • This study was conducted to analyze the correlation of soil physical properties and growth of turfgrass on the ground of Olympic-mainstadium. Soil hardness and turf visual quality were measured at 77 plots (10m x 10m divided each) independently and analyzed correlation later. Physicochemical properties of the topsoil analyzed from three typical levels of the severely, moderately, slightly compacted areas. The ground showed high hardness at the center circle and the goal line, but low at the end line areas. On the contrary, visual quality rate of turfgrass was low at the center circle and the goal line, but high at the end line areas. The correlation was shown a significant negative value on soil hardness between turf visual quality Soil hardness seems to be accelerated by the improper soil texture of sandy loam which contained a large amount of finer particle of silt (10.7%) and clay (11.1%) which values exceeded for USGA (United State Golf Association) recommendation. Deterioration of turf quality resulted initially from improper construction and followed by high soil compaction with continuous uses of the ground without proper maintenance. To perform the international quality of the turf ground, the initial construction procedures should be followed by standard specifications of sport ground.

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.