• Title/Summary/Keyword: 토양 수분량

Search Result 713, Processing Time 0.03 seconds

Sensitivity Analysis of Infiltration using a Mass Conservative Numerical Solution of Richards Equation (Richairds 방정식의 질량보존적 수치해석 해법에 의한 침투량의 민감도분석)

  • Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.683-688
    • /
    • 2007
  • Water flow into unsaturated soils is most often modeled by Richards equation consisting of the mass conservation law and Darcy's law. Three standard forms of Richards equation are presented as the head (${\Psi}$)-based form, the moisture content (${\theta}$) based form, and the mixed form. Numerical solutions of these partial differential equations with highly nonlinear terms can cause poor results along with significant mass balance errors. The numerical solution based on the mixed form of Richards equation is known that the mass is perfectly conserved without any additional computational efforts. The aim of this study is to develop fully implicit numerical scheme of Richards equation for one-dimensional vertical unsaturated flow in homogeneous soils using the finite difference approximation, and then to perform sensitivity analysis of infiltration to the variations in the unsaturated soil properties and to different soil types.

Studies on Grain-filling in Wheat II. Effects of Temperature and Soil Moisture on the Growth and Grain-filling in Wheat (맥류등숙향상에 관한 연구 제2보 온도 및 토양수분차이가 소맥의 생육 및 등숙에 미치는 영향)

  • 하용웅;류용환;연규복;김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.439-444
    • /
    • 1983
  • Effects of temperature and soil moisture on the growth and grain-filling of two wheat cultivars were investigated. Two levels of temperature; day 3$0^{\circ}C$/night $25^{\circ}C$ and day 2$0^{\circ}C$/night 15$^{\circ}C$ and two levels of soil moisture; stressed (45-50% of F.C.) and non-5tressed (50-60% of F.C.) were imposed in the green house from heading date to the maturity and grain weight, chlorophyll content of flag leaf and leaf area index(LAI) were observed at weekly interval. Grain maturation was faster in the high temperature than those in the lower temperature. Chlorophyll content of flag leaf and LAI decreased rapidly in the high temperature and chlorophylls disappeared at the 20 days after heading. In lower temperature condition, slower decrements were shown in chlorophyll content and it remained until 45 days after heading. Grain weights in the high and optimum temperature conditions reached to maximum values at 29 days and 45 days after heading, respectively. Differences of grain weight and chlorophyll content of flag leaf were not significant between stressed and non-5tressed soil moisture condition.

  • PDF

Effect of Incorporation Rate of Polyacrylamide Hydrogel on Changes in Physical Properties of Root Media (Polyacrylamide 고흡수성 수지의 혼합 비율이 상토의 물리성에 미치는 영향)

  • Wang, Hyun-Jin;Choi, Jong-Myung;Lee, Jong-Suk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2005
  • This research was conducted to determine physical properties of four root media, peatmoss + vermiculite (1:1, v/v; PV), peatmoss + composted rice hall (1:1, PR), peatmoss + composted saw-dust (1:1 : PS) and peatmoss + composted pine bark (1:1 PB), as influenced by incorporation rate of Stock-sorb C (STSB). Each root medium containing STSB was packed in 22 cm diameter plastic pot and the physical properties were determined at 5 weeks after packing. As incorporation rate of STSB were elevated, total porosity increased in PV, PS and PB media with statistical differences at $5{\%}$ level. Those also resulted in increase of container capacity in PS and PB media, but statistical differences were not observed in PV and PR media. Elevated incorporation rate of STSB in PV, PS and PB media resulted in increase of air space with statistical differences. Trends in air space of the three root media showed a linear as well as quadratic responses to STSB contents of media. As incorporation rate of STSB increased, more water was retained in four root media at the soil moisture tension of 4.90 kPa, 9.81 kPa, 29.4 kPa and 1.5 MPa. The amount of water retained in PS medium was the highest at the moisture tension at 29.4 kPa and 1.5 MPa followed by PB, PR and PV medium. These results indicated that elevation of incorporation rate of STSB to various root media increased moisture retention capacity, but did not increase the available water holding capacity.

Degradation Characteristics of Insecticide Diazinon by Treatment of Raw Pig Slurry and Processed Pig Slurry in Upland and Paddy Soil (돈분액비 및 가공돈분액비 처리에 따른 밭토양과 논토양 중 살충제 Diazinon의 분해특성)

  • Lee, Young-Ju;Park, Hee-Won;Moon, Joon-Kwan;Choi, Hong-Lim;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.332-338
    • /
    • 2010
  • Degradation characteristics of insecticide diazinon in upland and paddy soils under laboratory conditions were investigated to elucidate the effect of raw pig slurry (RPS) and processed pig slurry (PPS) treatment. Soil (20g) was treated with RPS and PPS by standard rate, double rate and triple rate before treating with diazinon (0.5mg/kg level) and incubating at ($25{\pm}2^{\circ}C$) for 60 days. The half-lives of diazinon in the untreated upland and paddy soil were about 28 and 22 days respectively. The degradation rate of diazinon was faster by $5.0{\pm}1.2$ days in the paddy soil than in the upland soil independent of fertilizer types. This result indicates that soil moisture content affects the half-life of diazinon probably by hydrolysis. Degradation of diazinon was faster in RPS treatment soil than in PPS treatment soil. The more amount of fertilizers were treated, the more rapidly diazinon degraded regardless of fertilizers and soil types. Based on the results obtained, degradation of diazinon in soil was definitely influenced by soil water contents and treatment of those fertilizers.

Effects of Salty Irrigation Water on Soil Properties and Crop Yields (염분 관개용수가 토양의 성질과 작물생산량에 미치는 영향)

  • ;Hanks, R. J.;Willardson, L.S.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.106-116
    • /
    • 1987
  • 미국 Utah주의 huntington 화력발전소에서 냉각수를 사용하고 버리는 염분농도가 4mmhos/cm 정도로 높아 자연하천으로 그대로 방류 시킬 수 없으며, 미 환경법에 따라 안전처리후 방류할 수 있다. 따라서 이 염분발생 처리방법의 하나로 보리, 밀, 옥수수, 감자 그리고 알팔파등 사료작물의 관개용수로 이용할 수 있는 방법이 장기간 시험연구되고 있다. 현재로서는 이 방법이 경제적인 것으로 평가되고 있으나 장기적으로 이 염분폐수로 인한 토양의 성질변화 작용의 생산량 감소등에 미치는 영향을 구명하기 위해서 1977년에 시작하여 8년 연속 연구사업으로 진행되고 있다. 본 논문에서는 지난 8년간(1977~1984년)의 관측.조사자료를 이용하여 염분 관개용수가 장기적으로 생산량 추정과 계획예측을 위한 자발성과 토양수분변화를 추정할 수 있는 모형에 의하여 연구한 결과를 요약하면 다음과 같다. 1. EC 4mmhos/cm의 염분 관개용수로 8년간 장기간 추출한 결과, 추출용수의 양에 관계내 염분축적은 예상보다 서서히 진행되었으며, 이 염분축적이 작물의 생산량 감소의 주원인은 아니었다. 2. 지난 2년간의 관측 결과, 염분 관개용수에 함유된 10ppm정도의 요소가 작물 특히 보리, 옥수수, 감자등의 생산량 감소의 주원인 것으로 판단된다. 염분용수 진개구에는 하천수 보다 20배가 많은 요소가 축적돼 있었으며, 이는 요소가 토양내에 잘 침투되며, 토양으로 부터 요소를 용달시키려는 염분을 용달시킬 때 보다 후러씬 더 많은 용달용수를 필요로함을 뜻한 작물들의 면요소성을 구명하기위한 모형개발이 요구된다. 3. 염분관개용수로 관개할 때 보리, 옥수수, 감자등의 작물 생산량과 풍작물 생산량은 현저하게 감소하였다. 보리, 옥수수의 염분용수에 의한 생산량과 하천수에 의한 생산량과의 비는 풍건물의 경우 0.6, 매물의 경우 0.5였으며 감자의 경우는 0.2이하였다. 4. 염분용수 관개구와 하천수 관개구의 모든작물에서 풍건물 생산량과 축배량 사이에는 강한 직선적인 관계를 보였다. 보리, 감자의 작물 생산량과 축배량사이에도 선형의 관계가 성립되었으나, 밀과 옥수수의 매물 생산량과 축배량사이에는 곡선적인 관계를 나타내었다.

  • PDF

Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors (유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측)

  • Jeong, Minyeob;Kim, Dae-Hong;Kim, Seokgyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

Effects of Felling of Damaged Tree of Pine Wilt Disease on Soil Respiration in Pinus densiflora Stands (소나무재선충병 피해목 벌채가 토양호흡에 미치는 영향)

  • Cho, Min-Gi;Jeon, Kwon-Seok;Park, Jun-Ho;Kim, Jong-Kab;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.9-15
    • /
    • 2009
  • The objectives of this study was to obtain the basic information for reasonable management of soil ecosystem damaged by pine wilt disease. Soil temperature and moisture content were $15.3{^{\circ}C}$ and 11.5% at whole-cut site, $14.4{^{\circ}C}$ and 13.5% at partial-cut site, and $13.7{^{\circ}C}$ and 14.8% at control site, respectively. The content of soil organic matter throughout the study period ranged from 2.11 to 2.64% at whole-cut site, 2.26 to 3.33% at partial-cut site, and 2.27 to 3.10% at control. Soil respiration rates showed seasonal fluctuations increasing in summer, which showed positive correlations between soil respiration and soil temperature. Average soil respiration were 0.24, 0.36 and $0.32gCO_{2}/m^{2}/hr$ at whole-cut site, partial-cut site, and control, respectively. $Q_{10}$ values ranged from 2.39 to 2.68 at Pinus densiflora stands damaged by pine wilt disease. Annual soil respiration rate at whole-cut site, partial-cut site and control were 8.1, 15.6 and $14.6tCO_{2}/ha/yr$, respectively.

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Amendments and Construction Systems for Improving the Performance of Sand-Based Putting Greens (골프장 putitng green 개선을 위한 토양 개량제와 green 구조시설)

  • Ok Chang-Ho;Anderson Stephen H.;Ervin Erik H.
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Physical and chemical properties of root zone mixes and methods of green construction are important considerations for improving turf grass quality for putting greens. This study compared Penncross creeping bentgrass (Agrostis palustris Huds.) performance as affected by three root zone construction systems with three amendments (sand, peat, and zeolite). The objective of this study was to determine if an amended California construction system would improve green performance during establishment (1998-1999) and maturation (2000-2001). Three treatments were tested: California ($100\%$ sand), USGA($90\%$ sand and $10\%$ peat, v/v), and California-Z ($85\%$ sand and $15\%$ zeolite, v/v). Treatments were arranged in a randomized complete block with four replicates. Physical and chemical properties of the root zone and bentgrass performance were compared for the treatments. The California-Z treatment had the highest saturated hydraulic conductivity, field infiltration rate and the lowest bulk density. It also had the highest cation exchange capacity and plant available nutrient concentrations among the three treatments. The California-Z treatment produced bentgrass quality and color during green establishment and maturation that were equal to or higher than the California treatment, and consistently higher than the USGA treatment. The addition of an inorganic amendment to the California system improved physical and chemical properties of the root zone and improved quality and color of bentgrass during green establishment. During green maturation, creeping bentgrass in the California-Z treatment was equal (6 of 15 sampling dates) or $20\%$ higher (9 of 15 dates) in quality compared to the California system.

A Tank Model Shell Program for Simulating Daily Streamflow from Small Watersheds (Tank모형 쉘프로그램을 이용한 중소하천의 일유출량 추정)

  • 박승우
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 1993
  • A menu-driven shell program DSFS (Daily Streamflow Simulation Model), that can process the input data, optimize the parameters, execute the program, and graphically display the results of a modified tank model, was developed and applied to simulating daily streamflow from small watersheds. The model defines daily watershed evapotranspiration losses from potential values multiplied by monthly landuse coefficients and correction factors for soil water storage levels. The parameters were calibrated using observed hydrologic data for fifteen watersheds, and the results were correlated with watershed parameters to define empirical relationships. The proposed model was tested with streamflow data of ungaged conditions, and the simulation results overestimated the annual runoff.

  • PDF