Effects of Felling of Damaged Tree of Pine Wilt Disease on Soil Respiration in Pinus densiflora Stands

소나무재선충병 피해목 벌채가 토양호흡에 미치는 영향

  • Cho, Min-Gi (Graduate School, Gyeongsang National Univ.) ;
  • Jeon, Kwon-Seok (Southern Forest Research Center) ;
  • Park, Jun-Ho (Gyeongsangnam-do Forest Environment Research Institute) ;
  • Kim, Jong-Kab (Div. of Environmental Forest Science(Instit. of Agric. and Life Sci.) Gyeongsang National Univ.) ;
  • Moon, Hyun-Shik (Div. of Environmental Forest Science(Instit. of Agric. and Life Sci.) Gyeongsang National Univ.)
  • 조민기 (경상대학교 대학원) ;
  • 전권석 (남부산림연구소) ;
  • 박준호 (경상남도 산림환경연구원) ;
  • 김종갑 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 문현식 (경상대학교 환경산림과학부(농업생명과학연구원))
  • Received : 2009.02.12
  • Accepted : 2009.04.20
  • Published : 2009.04.30

Abstract

The objectives of this study was to obtain the basic information for reasonable management of soil ecosystem damaged by pine wilt disease. Soil temperature and moisture content were $15.3{^{\circ}C}$ and 11.5% at whole-cut site, $14.4{^{\circ}C}$ and 13.5% at partial-cut site, and $13.7{^{\circ}C}$ and 14.8% at control site, respectively. The content of soil organic matter throughout the study period ranged from 2.11 to 2.64% at whole-cut site, 2.26 to 3.33% at partial-cut site, and 2.27 to 3.10% at control. Soil respiration rates showed seasonal fluctuations increasing in summer, which showed positive correlations between soil respiration and soil temperature. Average soil respiration were 0.24, 0.36 and $0.32gCO_{2}/m^{2}/hr$ at whole-cut site, partial-cut site, and control, respectively. $Q_{10}$ values ranged from 2.39 to 2.68 at Pinus densiflora stands damaged by pine wilt disease. Annual soil respiration rate at whole-cut site, partial-cut site and control were 8.1, 15.6 and $14.6tCO_{2}/ha/yr$, respectively.

본 연구는 소나무재선충병의 피해를 받은 토양생태계의 합리적인 관리를 위한 기초정보를 제공할 목적으로 이루어졌다. 토양온도와 수분함량은 완전벌채지 $15.3{^{\circ}C}$, 11.5%, 일부벌채지 $14.4{^{\circ}C}$, 13.5%, 대조구 $13.7{^{\circ}C}$, 14.8%로 나타났다. 토양유기물 함량은 완전벌채지가 2.11~2.64%, 일부벌채지 2.26~3.33%, 대조구 2.27~3.10%의 범위에 있은 것으로 분석되었다. 토양호흡량은 계절적인 차이가 있었는데 여름철에 높았으며, 토양온도와 정의 상관이 있는 것으로 나타났다. 평균 토양호흡량은 완전벌채지 0.24, 일부벌채지 0.36, 대조구 $0.32gCO_{2}/m^{2}/hr$로 나타나 소나무재선충 피해목만 벌채한 일부벌채지의 토양호흡량이 가장 높은 것으로 분석되었다. 소나무재선충병 피해지 산림토양의 $Q_{10}$값은 2.39에서 2.68 사이에 있는 것으로 나타났다. 조사기간을 통한 년간 토양호흡량은 완전벌채지, 일부벌채지, 대조구에서 각각 8.1, 15.6, $14.6tCO_{2}/ha/yr$으로 분석되었다.

Keywords

References

  1. Boerner, R. E. J. and E. K. Sutherland. 1997. The chemical characteristics of soil in control and experimentally thinned plots in mesic oak forests along a historical deposition gradient. Appl. Soil Ecol. 7: 59-71 https://doi.org/10.1016/S0929-1393(97)00023-1
  2. Bowden, K. D., K. J. Nadelhoffer, R. D. Boone, J. M. Melillo, and J. B. Garrison. 1993. Contribution of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can. J. For. Res. 23: 1402-1407. https://doi.org/10.1139/x93-177
  3. Chung, Y. J., S. M. Lee, D. S. Kim, K. S. Choi, S. G. Lee, and C. G. Park. 2003. Measurement and within-tree distribution of larval entrance and adult emergence holes of Japanese pine sawyer, Monochamus alternatus(Coleoptera: Cerambycidae). Korean J. Appl. Entomol. 42: 315-321.
  4. Concilio, A., S. Ma, Q. Li, J. LeMoine, J. Chen, M. North, D. Moorhrad, and R. Jensen. 2005. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests. Can. J. For. Res. 35: 1581-1591. https://doi.org/10.1139/x05-091
  5. Davidson, E. A., E. Belk, and R. D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in temperate mixed hardwood forest. Glob. Change Biol. 4: 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  6. Ellert, B. H. and E. G. Gregorich, 1995. Management-induced changes in the actively cycling fraction of soil organic matter. Soil Sci. Soc. Am. p.119-138.
  7. Hong, S. H., S. H. Kim, H. J. Kang, H. W. Ryu, S. D. Lee, I. S. Lee, and K. S. Cho. 2006. Effects of Pb and $CO_2$ on soil microbial community associated with Pinus densiflora-lab. J. Ecol. Field Biol. 29: 551-558. https://doi.org/10.5141/JEFB.2006.29.6.551
  8. Hwang, J. H. and Y. Son. 2002. Effects of thinning, liming and litter layer treatments on soil $CO_2$ efflux and litter decay in Pinus rigida and Larix leptolepis plantations. Jour. Korean For. Soc. 91: 471-479.
  9. Jeong, J. H., K. S. Koo, C. H. Lee, and C. S. Kim. 2002. Physico-chemical properties of Korean forest soils by regions. Jour. Korean For. Soc. 91: 694- 700.
  10. Kwon, T. S., Y. S. Park, Y. H. Kwon, M. Y. Song, S. C. Shin, and J. D. Park. 2003. Effects of aerial pesticide application on arthropod communities in pine forests. Jour. Korean For. Soc. 92: 608-617.
  11. Kwon, T. S., K. H. Kim, C. S. Kim, J. H. Lee, Y. Hong, and J. T. Kim. 2005. Effects of pesticide(Fenitrothion) application on soil organisms in pine stand, Jour. Korean For. Soc. 94: 420-430.
  12. Kirita, H. 1971. Re-examination of the absorption method of measuring soil respiration under field conditions. Jap. J. Ecol. 27: 37-47.
  13. Lee, S. M., Y. J. Chung, S. G. Lee, D. W. Lee, H. Y. Choo, and C. G. Park. 2003. Toxic effects of some insecticides on the Japanese pine sawyer, Monochamus alternatus. Jour. Korean For. Soc. 92: 305-312.
  14. Lee, Y. Y. and H. T. Mun. 2001. A study on the soil respiration in a Quercus acutissima forest. Korean J. Ecol, 24: 141-147.
  15. McClaugherty, C. A., J. D. Aber, and J. M. Melillo 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecol. 63: 1481-1490. https://doi.org/10.2307/1938874
  16. Moon, H. S. 2004. Soil respiration in Pinus densiflora, Quercus variabilis and Platycarya strobilacea stands in Jinju, Gyeongnam Province. Korean J. Ecol. 27: 87-92. https://doi.org/10.5141/JEFB.2004.27.2.087
  17. Moon, H. S., S. Y. Jung, and S. C. Hong. 2001. Rate of soil respiration at black locust(Robinia pseudoacacia) stands in Jinju area. Korean J. Ecol 24:, 371- 376.
  18. Nakane, K. 1995. Soil carbon cycling in Japanese cedar(Cryptomeria japonica) plantation. For. Ecol. Manage. 72: 185-197. https://doi.org/10.1016/0378-1127(94)03465-9
  19. Raich, J. W. and K. J. Nadelhoffer. 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecol. 70: 1346-1354. https://doi.org/10.2307/1938194
  20. Schlenter, R. E. and K. Van Cleve. 1985. Relationship between $CO_2$ evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res. 15, 97-106. https://doi.org/10.1139/x85-018
  21. Sommerfeld, R. A., A. R. Mosier, and R. C. Musselman, 1993. $CO_2$, $NH_4$, and $N_2O$ flux through a Wyoming snowpack and implications for global budgets. Nature 361: 140-142. https://doi.org/10.1038/361140a0
  22. Son, Y. and H. W. Kim. 1996. Soil respiration in Pinus rigida and Larix leptolepis plantations. Jour. Korean. For. Soc. 85: 496-505.
  23. Stenberg, B. 1999. Monitoring soil quality of arable land: microbiological indicators. Soil and Plant Sci. 49: 1-24.
  24. Truco, R. F., A. C. Kennedy, and M. D. Jawson, 1994. Microbial indicators of soil quality. Soil Sci. Soc. Am. p.73-90.
  25. Yi, M. J. 2003. Soil $CO_2$ evolution in Quercus variabilis and Q. mongolica forests in Chunchon, Kangwon Province. Jour. Korean For. Soc. 92: 263-269.