• Title/Summary/Keyword: 토양 세균

Search Result 708, Processing Time 0.029 seconds

Effects of Diesel Oil on the Population and Activity of Soil Microbial Community (토양미생물군집의 개체수와 활성도에 미치는 경유의 영향)

  • Seo, Eun-Young;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 1994
  • The effects of diesel oil on the microbial community in sandy loam soil were investigated, and the effects of bioremediation which was performed to enhance the removal of diesel oil from soil were also measured. The residual percentage of diesel oil was about 50% after 16 week incubation period. The bioremediation treatment increased the removal rate at 60~95%. When the soil was contaminated with diesel oil, the direct bacterial count, length of fungal hyphae, aerobic heterotroph and hydrocarbon degrader were increased by 2~3 orders of magnitude. The bioremediation further increased these numbers 10 to 100-fold. There were no difinite patterns of change in fluorescein diacetate hydrolysis activity in bioremediation-untreated soil, but about 10 times of increase of activity was observed in bioremediation-treated soil. Similar change was occurred in soil dehydrogenase activity.

  • PDF

Phylogenetic characteristics of actinobacterial population in bamboo (Sasa borealis) soil (조릿대 대나무림 토양 내 방선균군집의 계통학적 특성)

  • Lee, Hyo-Jin;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, a pyrosequencing was performed and analyzed to verify the phylogenetic diversity of actinomycetes in the bamboo (Sasa borealis) soil as a base study to obtain the genetic resources of actinomycetes. It was found that the rhizosphere soil had much various distribution in bacterial communities showing a diversity of 8.15 with 2,868 OTUs, while the litter layer showed a diversity of 7.55 with 2,588 OTUs. The bacterial community in the bamboo soil was composed of 35 phyla and the predominant phyla were Proteobacteria (51-60%), Bacteroidetes (16-20%), Acidobacteria (4-16%) and Actinobacteria (4-14%). In particular, Actinobacteria including Micromonosporaceae and Streptomycetaceae had a diverse distribution of actinomycetes within the six orders, 35 families and 121 genera, and it was characterized that about 83% of actinomycetes within Actinomycetales belonged to the 28 families. Among the dominant actinobacterial populations, Micromonosporaceae, Pseudonocardiaceae and Streptomycetaceae were representative family groups in the bamboo soils.

Bacterial Chemotaxis to Extracts, Exudates, Solutions in Vitro and Soil (In vitro 및 토양에서 추출물, 삼출물, 용액에 대한 세균의 화학주성)

  • Lee Min Woon;Kim Sung Ill;Shim Jae Ouk;Shin Hyun Sung;Kim Gwang Po
    • Korean Journal Plant Pathology
    • /
    • v.2 no.3
    • /
    • pp.165-173
    • /
    • 1986
  • Accumulation of Pseudomonas sp., P. fluorescens and Erwinia carotovora in 60 min treatment was greater in extracts from soil, exudate from ginseng root and solutions than distilled water. In bacterial movement toward rubber tube soil from chamber, accumulation of P. fluorescens in response to soil supplemented with soil extracts, exudate and solutions was generally greater in soil extracts compared to control and other solutions, but Pseudomonas sp. and E. carotovora were not much response to supplemented extracts, exudate and solutions. Accumulation of the bacteria in capillaries containing various exudates from fungal propagules with not attracted to the exudates. For an accumulation of bacteria in rubber tubes containing soil inoculated with fungal propagules, the Pseudomonas sp. was not attracted in soil inoculated by the organisms as attractant but P. fluorescens and E. carotovora to fungi were attracted to F. solani, F. oxysporum and mixed organism Alternaria panax did not affect on bacterial movement except E. carotovora. The organic matter conten in Kangwha and Kimpo soil were low in diseased and healthy soil. The K content was especially high in Kimpo healthy soil. Bacterial population in Goesan and Kangwha were more abundant than other soil. The number actinomycetes was populated abundant in healthy soil of Goesan and diseased soil of Poonggi.

  • PDF

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -II. Identification of associative heterotrophic nitrogen fixing bacteria in histosphere of grasses and rice (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 혈청면역학적(血淸免疫學的) 방법(方法)에 의한 협생질소고정세균(協生窒素固定細菌)의 분리(分離))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Ko, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.193-197
    • /
    • 1987
  • Associative heterotrophic nitrogen fixing bacteria were identified by immunodiffusion method in the histosphere of Planta-ginaceae, Caryophllaceae, Gramineae, and two types of rice cultivars. Twenty four strains associative heterotrophic bacteria with high ARA (more than 10nmole/tube/hr) were isolated from the histosphere of grasses and rice.* Those strains were related with 8 species of Azospirillum, 11 species of Pseudomonas, 2 species of Klebsiella and 2 species of Agrobacterium. Among them Azospirillum sp. and Pseudomonas sp. were predominant in histosphere of grasses and rice cultivars. From the histosphere of Oryza sativa, and Sagina maxima, the strains of Azospirillum, Pseudomonas, Klebsiella, and Agrobacter were identified while Pseudomonas was identified from Ischaemum anthephoroides, Plantago lanceolata, Miscanthus sacchuriflorum, and only Azospirillum was identified from Zoisia sinica, respectively. Associative nitrogen fixing heterotrophic bacteria were more abundant in the histosphere of Oryza sativa and Sagina maxima than that of other grasses grown in saline and reclaimed saline paddy soil.

  • PDF

Distribution and Characteristics of Acidotolerant Heterotrophic and Naphthalene­Degrading Bacteria in Acidic Soils (산성토양에서 내산성 종속영양세균과 나프탈렌분해세균의 분포 및 특성)

  • Moon Yong-Suk;Chu Kwang-Il;Kim Jongseol
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.313-319
    • /
    • 2004
  • The distribution and characteristics of acidotolerant heterotrophic and naphthalene-degrading bacteria were investigated in two forest areas, one near Ulsan petrochemical industrial complex (Sunam) and the other in countryside (Daeam). Average values of soil pH at Sunam and Daeam were 3.8 and 4.6, respectively. When het­erotrophic and naphthalene-degrading bacteria were enumerated by most probable number (MPN) procedures at Sunam, the median values of heterotrophs growing at pH 7.0 and pH 4.0 were $5.3{\times}10^7\;and\;3.3{times}10^7$ MPN/g, whereas those of naphthalene-degraders were $5.6{\times}10^4\;and\;4.0{times}10^5$ MPN/g, respectively. While the medians of heterotrophs at Daeam were larger than those at Sunam, the concentrations of naphthalene-degraders were higher at Sunam compared to those at Daeam. From the MPN tubes and enrichment cultures, we obtained 17 isolates of naphthalene-degraders which were identified as Sphingomonas paucimobilis, Brevundimonas vesic­ularis, Burkholderia cepacia, Ralstonia pickettii, Pseudomanas fluorescens, and Chryseomonas luteola. Among them, 6 isolates showed higher naphthalene-degrading activity on minimal media of pH 4 compared to pH 7, whereas the extent of growth was not greater at pH 4 than at pH 7 when they were inoculated on nutrient-rich media. It is plausible that the pH may affect naphthalene-degrading activity of the isolates by changing fatty acid composition of bacterial membrane.

Impact of Amendments on Microbial Biomass, Enzyme Activity and Bacterial Diversity of Soils in Long-term Rice Field Experiment (개량제 장기 연용이 논토양의 미생물체량, 효소활성 및 세균 다양성에 미치는 영향)

  • Suh, J.S.;Noh, H.J.;Kwon, J.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • The long-term effects of soil management history on microbial communities are still poorly understood. Our objectives were to determine the impact of long-term application of soil amendments on microbial communities in rice paddy fields. The treatments selected were control where crops were grown without any nutrient application (CON); nitrogen-phosphorus-potassium (NPK); NPK plus compost (CNPK); NPK plus lime (LNPK); and NPK plus silicate (WNPK). The long-term addition of organic and inorganic amendments significantly changed soil chemical properties. The amount of organic carbon increased in the treatments with fertilizer and amendments over that in the soil without inputs. However, we could not observe the differences of bacterial population among the treatments, but the number of aerobic bacteria increased by the addition of amendments. Isolates from the rice paddy soils before irrigation were Dactylosporangium, Ewingella, Geobacillus, Kocuria, Kurthia, Kytococcus, Lechevalieria, Micrococcus, Micromonospora, Paenibacillus, Pedobacter, Pseudomonas, Pseudoxanthomonas, Rhodococcus, Rothia, Sphingopyxis, Stenotrophomonas, and Variovorax. Dominant genera were Arthrobacter, Kocuria, Kurthia, and Bacillus in the long-term field. Microbial biomass was the highest in the compost treatment (CNPK), and was the lowest in the CON. Dehydrogenase activity in soils treated with rice compost straw was the highest and the activity showed an increasing trend according to treatment as follows: CON < WNPK < NPK = LNPK < CNPK. These results demonstrate that soil management practice, such as optimal application of fertilizer and amendment, that result in accumulations of organic carbon may increase microbial biomass and dehydrogenase activity in long-term rice paddy soils.

Relationship between Number of Soil Micro-organisms and Change of Cropping System (답전(畓田) 윤환시(輪換時) 작부체계(作付體系)와 토양미생물상(土壤微生物相) 변화(變化)와의 관계(關係))

  • Lee, Sang-Kyu;Yun, Sei-Young;Kim, Seung-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.70-76
    • /
    • 1992
  • A field experiment was conducted to find out the influence of cropping systems under rotation of paddy-upland soil on soil microorganisms with specific reference to cations concentration in the soil. The results obtained was summarized as follows. 1. The number of soil bacteria and actinomycetes increased in fallow, continuous cultivation of rice and soybean while the number of fungi decreased. 2. Gram negative bacteria as Pseudomonas spp. and Rhizobium spp. remarkably incerased with increasing Gram positive bacteria of Bacillus subtilis in continuous cultivatio of soybean. 3. The relative population of soil born plant pathogen such as Fusarium spp. Rhizoctionia spp. and Phoma spp. to the total soil fungi was high in cultivation of potato and Chinese cabbage. The ratio of soil plant pathogen to the total soil fungi was high in cultivation of potato with Chinese cabbage. 4. The number of bacteria and actinomycetes was positively correlated with ratio of Ca+Mg/K in soil while negatively correlated with soil fungi.

  • PDF

Soil Microorganism Degrading Polycaprolactone (Polycaprolactone을 분해하는 토양미생물)

  • Kim Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.400-404
    • /
    • 2004
  • Polycaprolactone (PCL), a synthetic aliphatic polyester, was buried in activated sludge soil for 66 days at $27^\circ{C}$ and $37^\circ{C}$. The morphology of the surface of PCL film degraded by soil microorganisms was observed. Soil microorganisms degrading PCL were isolated and identified. Soil fungi and soil bacteria utilizing PCL as carbon or energy source were identified as Paecilomyces fumosoroseus KH27, Penicillium digitatum KH28, Fusarium solani KH29, Aspergillus sp. KH30 and Ochrobactrum anthropi KH31, respectively. Biodegradation test of PCL by the isolated strains showed that, P. digitatum KH28 exhibited the most PCL degrading activity at $27^\circ{C}$. However, at $37^\circ{C}$ O. anthropi KH31 showed higher degrading activity than the other soil microorganisms tested.

Isolation, Identification , and Biodegradability of Phosphamidon-Degrading Bacteria (Phosphamidon 분해세균의 분리동정 및 생분해능)

  • 강양미;송홍규;안태석;허성남
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.61-64
    • /
    • 1999
  • Organophosphorus inseclicide phosphamidon-degrading bacteria were isolated from agricultural soils and identified using Biolog microtiter assay. All Gram-positive degrading bacterial strains belong to genus Bacillus and many Gram-negative bacteria were rare soil species. Among them fast growing strains on phosphamidon-containing minimal medium were sclected and their biodegrading capability wcre measured. YD-17 which was identified as Capnocytophaga gingivalis showed the highest biodegradation rate. It could incrcase the removal of phosphamidon up to 52%. During the biodegradation continuous increase of amount of cell protein was observed, which indicated that phosphamidon was utilized as a carbon source for phosphamidon-degrading bacteria.

  • PDF