• Title/Summary/Keyword: 토양용액 성분

Search Result 62, Processing Time 0.023 seconds

Solubility Change of Gasoline Components Under Evaporation (휘발에 의한 가솔린 성분의 조성 및 용해도 변화특성)

  • 염익태;이상현;염혜정;안규홍
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 1998
  • Batch experiments were conducted to study the dissolution behavior of gasoline components. First, the dissolution kinetics of gasoline components and the applicability of Raoult's law in predicting their solubilities were investigated. In addition, the effects of compositional change of gasoline due to evaporization on the solubilities of individual components and TPH were determined. The kinetics of gasoline-water man transfer was found to be very similar for most components except for MTBE, which is a major additive for commercial gasoline. At equilibrium, the gasoline-water partitioning coefficients of individual components showed a log-linear relationship with their pure solubilities, though the slope was a little less than that predicted by Raoult's law. The concentrations of the individual components in the gasolines concentrated by volatilization could be characterized by the initial increase followed by substantial decrease. Almost the same behavior was observed for their solubilities. The total solubility (TPH) of gasoline decreased rapidly with the initial volume reduction and gradually decreased afterwards. The solubilities of BTEX, the major regulatory compounds, decreased even faster than the TPH solubilities. It was concluded that the compositional change of gasoline by volatilization may greatly affect their leaching potential and the toxicity of the contacting groundwater. The toxicity reduction efficiency by evaporating gasoline could be much more than the mass removal efficiency.

  • PDF

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -III. Amino Acids in the Acid Hydrolysates of Humic Acids Extracted from Straw of Rice and Barley (식물성(植物性) 유기질(有機質)의 부숙과정중(腐熟過程中) 부식특성(腐植特性)에 관(關)한 연구(硏究) -III. 볏짚과 보리짚부식산(腐植酸)의 산가수분해(酸加水分解) 용액중(溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.301-306
    • /
    • 1988
  • Contents and distribution of amino acids in the hydrolysates of humic acids extracted from straw of rice and barley at three different dates during decomposition were examined. The results obtained from this study may be summed up as the following: 1. There are differences between the humic acid hydrolysates from rice straw and barley straw in regards of composition of humic acids and distribution of amino acids. 2. Neutral amino acids as a group occupy the largest share, followed by acidic amino acids and basic amino acids. 3. The total amount of amino acids per gram of humic acid is greater in straw of rice than in straw of barley. 4. With the humification progressing the content of lysine increases, but the content of histidine decreases. In general glycine, glutamic acid, aspartic acid, alanine and leucine constitute the 5 predominant amino acids in all hydrolysates. 5. Arginine is not detected at all in any of the hydrolysates of humic acids obtained from humified materials. 6. The presence of phenylalanine and tyrosine is an evidence for the aromatic characteristics of humic acids.

  • PDF

Nondestructive Deterioration Diagnosis for the Former Ore Dressing Plant in the Yongwha Mine of Registered Cultural Property No. 255 (등록문화재 제255호 영양 구 용화광산 선광장의 비파괴 훼손도 진단)

  • Chun, Yu Gun;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.235-245
    • /
    • 2012
  • Nondestructive deterioration diagnosis has been carried out for the former ore dressing plant of the Yongwha mine in Yeongyang (Registered Cultural Property No. 255). Deterioration rates about organic contaminant and soil of the upper part (7 to 13 layer) indicate higher than the lower part (1 to 6 layer) of the ore dressing plants. By contrast, deterioration rates such as crack, break out and discoloration of the lower part indicate very higher than the upper part. It is estimated that the plants of the lower part that mechanical and chemical process had been done for flotation were damaged severely by physicochemical weathering with reaction of concrete and chemical solution. As results of ultrasonic velocity measurement, average p-wave velocity of plants were measured 2,462m/s (compressive strength $529kgf/cm^2$). As for the analytical results of surface contaminants and soil compositions using P-XRF, they were identical with major elements (Cu, Zn, Pb, Fe and As) of ore minerals from the Yongwha mine. Therefore, the ore dressing plant should be treated by phytoremediation with conservation because heavy metals could impinged upon plants and natural environment.

Determining Kinetic Parameters and Stabilization Efficiency of Heavy Metals with Various Chemical Amendment (중금속 안정화제의 반응 매개변수 결정 및 중금속 안정화 효율성 평가)

  • Oh, Se-Jin;Kim, Sung-Chul;Kim, Tae-Hee;Yeon, Kyu-Hun;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1063-1070
    • /
    • 2011
  • In this study, total of 5 different chemical amendments were evaluated for determining kinetic parameters and stabilization efficiency of heavy metals in aqueous phase. Standard solution of Cd and Pb ($100mg\;L^{-1}$) was mixed with various ratio of amendments (1, 3, 5, 10%) and heavy metal stabilization efficiency was monitored for 24hrs. All examined amendments showed over 90% of removal efficiency for both Cd and Pb except zerovalent iron (ZVI) for Cd (43-63%). Based on result of heavy metal stabilization efficiency, it was ordered as $CaCO_3$ > Dolomite > Zeolite > Steel slag > ZVI for both Cd and Pb in aqueous phase. For kinetic study, first order kinetic model was adapted to calculate kinetic parameters. In terms of reaction rate constants (k), zeolite showed the fastest reaction rate (k value from 0.4882 for 1% to 2.0105 for 10%) for Cd and ZVI (k value from 0.2304 for 1% to 0.5575 for 10%) for Pb. Considering reaction rate constant and half life for heavy metal stabilization, it was ordered as Zeolite > $CaCO_3$ > Dolomite > Steel slag > ZVI for Cd and $CaCO_3$ > Dolomite > Steel slag > Zeolite > ZVI for Pb. Overall result in this study can be interpreted that lime containing materials are more beneficial to remove heavy metals with high efficiency and less time consuming than absorbent materials.

Foliar Fertilization Effect of Environmentally-Friendly Organic Agricultural Materials for Grape Cultivation (포도재배를 위한 친환경 유기농자재의 엽면시비 효과)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.760-763
    • /
    • 2012
  • This study was conducted to investigate foliar treatment effects of organic agricultural materials for the environmentally-friendly cultivation of grape. The organic materials applied were chitosan, wood vinegar (pyroligneous acid), amino acid solution, and ginkgo leaf extract. All the organic materials were relatively strong acidic ranging lower than pH 4.6. when comparing with other organic materials, amino acid solution contained relatively high contents of selected plant nutrients, such as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn. As comparison of selected soil properties in the grape cultivating field, soil pH values were lower at the harvest stage than at the first stage of grape growing (before treating the organic materials), and electrical conductivity (EC) and soil organic matter content were higher at the harvest stage in the all plots. The concentrations of available phosphorus increased in most of the plot soils except in control plot (conventional treatment). The concentrations of exchangeable K decreased in the plot treated with ginkgo leaf extract and the control plot. The exchangeable Mg concentrations decreased in soils of all the plots. On the other hand, the concentrations of N and K in the grape leaves were higher with the treatments of chitosan and amino acid solution, P concentrations were higher with the applications of chitosan, wood vinegar and amino acid solution, and Ca and Mg concentrations were higher with chitosan and amino acid solution treatments, respectively, than with others. The yields of grape were higher, $1,581{\sim}1,583kg\;10a^{-1}$, in the control and wood vinegar treatment plots than others. Sugar contents of grape were not different among all the plots.

Effect of Vegetable Oils Addition on Fenton Treatment of PAHs-Contaminated Soil (식물성 식용유 첨가가 PAHs 오염토양 펜톤처리에 미치는 영향)

  • Kang, Myung-Hwa;Kim, Seung-Ho;Park, Young-Goo;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.160-168
    • /
    • 2006
  • This study was performed to evaluate the effect of the addition of vegetable oils on Fenton treatment of PAHs-contaminated soil. Fenton reaction can be proceeded in the soils contaminated with PHAs only in the presence of $H_2O_2$ because of Fe content in the soil. In this case, optimum $H_2O_2$ concentration was 3%. When 17.5 mM $FeSO_4$(III) was added with 3% $H_2O_2$, the removal rate was increased up to 25%, whereas 19% of PAHs was removed with $H_2O_2$ alone. The addition of 1% of olive oil to the contaminated soil before the Fenton reaction or simultaneously increased the removal rate about 15%, compared to the case of Fenton reaction only. There were no significant differences in the removal rates of PAHs, regardless of different kinds and concentration of oils. (olive oil, soybean oil, and used-vegetable oil). The used-vegetable oils were not different from the new, expensive oils in the removal rate, so their use will be desirable in saving the money. In addition of 1% of olive oil after the reaction of 3% $H_2O_2$ and 2.5 mM $FeSO_4$(III), the removal rates of 3~4 and 5~6 ring compounds were increased 13% and 17%, respectively, compared to the case of Fenton reaction only.

  • PDF

Effect of Pig Slurry Application on the Forage Yield of Sorghum X Sudangrass Hybrid and Leaching of NO3-N in Volcanic Ash Soil (제주 화산회토양에서 돈분액비 시용이 수수 X 수단그라스의 생산성 및 NO3-N의 용탈에 미치는 영향)

  • 박남건;고서봉;이종언;황경준;김문철;송상택
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • This study was carried out to determine the effect of pig slurry applications on the forage yield of Sorghum${\times}$Sudangrass hybrid and leaching of $NO_3$-N in volcanic ash soil in Jeju. It was arranged as a randomized block design with seven treatments: chemical fertilizer ($N-P_2$$O_{5}$ $-K_2$O=200-l50-150kg/ha), pig slurry 200kg N/ha, pig slurry 300kg N/ha, pig slurry 400kg N/ha, pig slurry 100kg N/ha+chemical fertilizer 100kg N/ha, pig slurry 150kg N/ha+chemical fertilizer 100kg N/ha, pig slurry 200kg N/ha+chemical fertilizer 100kg N/ha. The mean dry matter yield of Sorghum${\times}$Sudan grass hybrid per ha for 4 years(1998 to 2001) was higher(p<0.05) in pig slurry 300kg N/ha(l7,279kg) and pig slurry 400kg N/ha(17,817kg) treatments than those of other treatments. The $NO_3$-N concentrations of leaching water at soil depth 30cm in all treatments were excess the standard of WHO with level of $10.0mg/\ell$ on 20 days of the seeding, but this $NO_3$-N concentrations found to be below $5.0mg/\ell$ on August.

Stabilization of Heavy Metal Contaminated Paddy Soils near Abandoned Mine with Steel Slag and CaO (제강슬래그와 CaO를 이용한 폐광산 주변 중금속 오염 농경지 토양의 안정화 처리 연구)

  • Son, Jung-Ho;Roh, Hoon;Lee, Sun-Young;Kim, Sung-Kyu;Kim, Gil-Hong;Park, Joong-Kyu;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.78-86
    • /
    • 2009
  • Applicability of CaO and steel slag as stabilizers in the treatment of field and paddy soils near Pungjeong mine contaminated with arsenic and cationic heavy metals was investigated from batch and column experiments. Immobilization of heavy metals was evaluated by TCLP dissolution test. Immobility of heavy metal ions was less than 15% when steel slag alone was used. This result suggests that $Fe_2O_3$ and $SiO_2$, known as the major component of steel slag, have little effect for the immobilization of heavy metal ions due to acidity of TCLP solution. Immobilization of cationic heavy metals was little affected by the ratio of CaO and steel slag while arsenic removal was increased as the ratio of steel slag to CaO increased. In the column test, concentrations of both arsenic and cationic heavy metals in effluents were below the water discharge guideline over the entire reaction period. This result can be explained by the immobilization of cationic heavy metals from the increased pH in soil solution as well as by the formation of insoluble $Ca_3(AsO_4)_2$. From this work, it is possible to suggest that arsenic and cationic heavy metals can be concurrently stabilized by application of both CaO and steel slag.

Evaluation of Potentially Available Soil Nitrogen by Using Buffer Phosphote Solution of pH7 (답토양(畓土壤)의 인산완형액(燐酸緩衡液)에 의(依)한 지력질소(地力窒素) 평가(評價)에 관(關)한 연구(硏究))

  • Ahn, Sang-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.327-332
    • /
    • 1986
  • Laboratory experiments were conducted to estimate extractable nitrogen by buffer phosphate solution of pH 7. A series of experiment soils were a) Sandy soil applied with compost, lime, and Wallastonite every years for 32 years. b) Sandy soils with and without waterlogging for 70 days before transplanting. c) Normal soils produced high and common yields. The results were summarized as follows: 1. Extractable organic nitrogen by pH 7 phosphate buffer solution was increased in order of NPK + compost > NPK > NPK + compost + lime + Wollast-onite > NPK + compost + lime > NPK + wollastonite > no fertilizer plot. 2. Extractable organic nitrogens at plots of NPK and NPK + compost were decreased as the growth stage processed regardless of tretments. 3. In case of normal soils having high and common yields the content of total N, organic matter and $NH_4-N$ were increased in high productive soil, while, only $NO_3-N$ content was increased in common productive soil. Especially, there was a highly positive correlation between extractable total nitrogen and $NH_4-N$ content submerged for 4 weeks under incubated condition. 4. Organic nitrogen content of soil was increased on the condition of non-waterlogging, however, nitrogen uptake by rice plant was increased in waterlogged paddy. 5. The content of extractable total nitrogen increased in the order of normal soil, sandy soil, unmatured soil, saline soil, and estimation of optimum nitrogen rates by extracted organic nitrogen was in order of saline soil, unmatured soil, sandy soil, normal soil.

  • PDF