• Title/Summary/Keyword: 토양방선균

Search Result 246, Processing Time 0.026 seconds

Analysis of Bacterial Community Structure in the Soil and Root System by 168 rRNA Genes (16S rDNA를 이용한 토양, 작물근계의 세균군집 구조해석)

  • Kim, Jong-Shik;Kwon, Soon-Wo;Ryu, Jin-Chang;Yahng, Chang-Sool
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.266-274
    • /
    • 2000
  • Understanding of microbial community structure in soil-root system is necessary to use beneficial soil and rhizosphere microbes for improvement of crop production and biocontrol. The knowledge of behavior and function of microbes in soil-root system plays a key role for the application of beneficial inocula. Because the majority of the intact bacteria in soil are unable to grow on nutrient media, both culturable and nonculturable bacteria have to be studied together. In our study, culture-independent survey of bacterial community in the soil-root system of red pepper fields was conducted by the sequence analysis of three universal clone libraries of genes which code for small-subunit rRNA (rDNA). Universal small subunit rRNA primers were used to amplify DNA extracted from each sample and PCR products were cloned into pGEM-T. Out of 27 clones sequenced, 25 clones were from domain bacteria. Two of the rDNA sequences were derived from eukaryotic organelles. Within the domain bacteria, several kingdoms were represented : the Proteobacteria (16 clones). Cytophyga-Flexibacter-Bacteroides group (2 clones). the high G+C content gram-positive group(1 clone) and 4 unknown clones.

  • PDF

Effects of Fly Ash,Gypsum,and Shell on the Chemical Properties of Soil and Growth of Chinese Cabbage in Plastic Film Housed Paddy (시설재배논에 석탄회,석고,패각시용이 토양화학성과 배추의 생육에 미치는 영향)

  • Ha, Ho-Sung;Kang, Ui-Gum;Lee, Hyub;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.65-69
    • /
    • 1998
  • In order to evaluate the utility of bituminous coal fly ash, gypsum, oyster shell as soil amendments, aadic clayloam paddy soils with low calaum content were amended in the upper 15㎝ with amendments, and then Chinese cabbage was cultivated under plastic film house. Amendments treated were, in metric tons per hectare, i) none(Check) ; ii) 80 fly ash(FA) ; iii) 4 shell(SH) ; iv) 56 fly ash+24 gypsum (FG) ; v) 40 fly ash+24 gypsum+0.8 shell(FGS). On the whole, soil chemical properties were improved by amendments treatments. Amongst treatments, FA prominently neutralized soil pH and increased contents of Av. $P_2O_5$, Ex. K, and Av. B in soils. Besides, it showed the highest ratio in bacteria/fungi and (bacteria+actinomycetes)/fungi. FGS also affected the neutralization of soil pH and the increment of Ex. Mg. Amendments plants appeared alkaline damages only at early growing stage, but showed positive responses in fresh weight yields : 23% for FGS : 21% for FG : 19 18% for SH. At harvesting, leaves both of FA and FGS plants had higher values in contents of N, P, K, Ca, Mg, Fe, Mn, Zn, B, reduang-sugar, and vitamin-C than of others. In especial, Check plants appeared the heart rot symptoms owing to calaum defiaency differently from amendments plants. Taken together, FGS was an effective combination enable to maximize the utility of fly ash, gypsum, shell as soil amendments, espeaally in cabbage yield and quality.

  • PDF

Identification of a Protein Kinase using a FITC-labelled Synthetic Peptide in Streptomyces griseus IFO 13350 (형광 Peptide를 이용한 Streptomyces griseus IFO 13350의 인산화 단백질 동정)

  • 허진행;정용훈;김종희;신수경;현창구;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Streptomycetes is a group of Gram-positive soil bacteria that growas a branching vegetative mycelium leading to the formation of spores, and display a physiological differenti-ation related to the synthesis of many secondary metabolites including antibiotics. Their complex life cycle and multicellular differentiation require various levels of regulation and types of signal transduction systems including eukaryotic-type serine/threonine protein kinases and prokaryotic-type histidine/aspartic acid protein kinases. Akt kinase that was found in cells is a sorine/threonine kinase controlling signal pathway for multi-tude of important cellular events. The activation or inactivation of Akt kinase in the cell is one of the critical regulatory points to deliver cell proliferation, differentiation, survival or apoptosis signal. To find the regula-tory protein homologous to Akt in Streptomyces, the fluorescien-labeled synthetic peptide (FITC-TRRSR-TESIT) was designed from the consensus sequence of target proteins for Akt kinase. From the difference of the mobility between the nonphosphorylated and phosphorylated synthetic peptides on Agarose gel electro-phoresis, the Akt-phosphorylating activity was monitored. The cell-free extract prepared from Streptomyces griseus IFO 13350 and the Akt homologous protein was purified by ammonium sulfate fractionation and many steps of column chromatographies such as, DEAE-Sepharose, Mono Q, Resource Phenyl-Soporose and Gel permeation column chromatographies. As a result, the protein phosphorylating the fluorescien-labeled Akt substrate was identified and it's molecular weight was estimated as 39 kDa on SDS-PAGE.

Studies on the Production of Enzymes by Thermophilic Actinomycetes (PART II) Some Properties of $\alpha$-Amylase from Thermophilic Actinomycetes (고온성 방선균에 의한 순소생산에 관한 연구 (제2보) $\alpha$-Amylase의 효소학적 성질)

  • Yang, Han-Chul;Park, Yong-Jin;Cho, Hong-Yeon
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.3
    • /
    • pp.91-97
    • /
    • 1976
  • During the course of studies on the production and utilization of thermostable ${\alpha}$-amylase from a thormophilic actinomycete species isolated from soil, partial characterization of the ${\alpha}$-amylase has been (arried out. The optimum pH for the dextrinogenic activity of the enzyme was found to be 6.5 and the maximum reaction rate was achieved at a temperature range of 55$^{\circ}$ to 65$^{\circ}C$. Calcium ion was recognized to have a slight effect in activating the enzyme, while heavy metal salts especially ferrous and cupric ions showed a remarkable inhibition effect. The enzyme was best protected iron thermal denaturation at pH 8.0 with tris-HCI buffer;inactivation was rapid at higher or lower pH values. Furthermore, its thermal stability was greatly increased by calcium ion, particulary at the final concentration of 1${\times}$10$\^$-2/ mole in the reaction mixture. The Km value for the ${\alpha}$-amylase was calculated to be 2.17${\times}$10$\^$-4/g per $m\ell$ and the energy of activation for the dextrinogenic reaction to be 12,000${\pm}$580 ㎈ per mole.

  • PDF

In vitro Antimicrobial Activity of a New Isolate Streptomyces sp. BCNU 1030 (신규 분리균주 Streptomyces sp. BCNU 1030의 in vitro 항균활성)

  • Bang, Ji-Hun;Choi, Hye-Jung;Ahn, Cheol-Soo;Kim, Dong-Wan;Jeong, Yong-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.589-595
    • /
    • 2011
  • This work focused on screening and characterizing antibiotic-producing actinomycetes to develop new antibiotics that can overcome the growing resistance of disease-causing microbes. One-hundred actinomycetes strains were isolated from soil samples from Chungcheongbuk-do, Korea using various kinds of actinomycetes isolation media, including a starch casein agar medium and potato dextrose agar (PDA). Among them, strain BCNU 1030 was determined to show strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Biochemical, physiological, and 16S rRNA sequence analyses indicated that strain BCNU 1030 belonged to the genus Streptomyces. Strain BCNU 1030 exhibited antibiotic activity against a wide range of bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of BCNU 1030 dichloromethane extract was determined to be $0.78\;{\mu}g/ml$ for MRSA CCARM 3090. Therefore, Streptomyces sp. BCNU 1030 has potential for anti-MRSA drug development.

Effect of Organic Matter on the Occurrence of Fusarium Wilt in Cucumber (Fusarium oxysporum f. sp. cucumerinum에 의한 오이덩굴쪼김병의 발생에 미치는 유기물 시용의 효과)

  • Seo In Seuk
    • Korean Journal Plant Pathology
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 1986
  • Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum has caused high damage in cucumber under greenhouse condition. This disease was suppressed $30\~55\%$ by application of organic matters compared with natural cropping soils. The suppression effect was the highest in the mushroom humic compost and fowl excretion matter among the various organic matters, varying with kinds of organic matters and degrees of humic resolvability. There was a slight difference in severity of fusarium wilt between sterilized organic matters and soils. The disease occurrence was delayed more in the nonsterilized organic matters and soils than in the sterilized ones. At 30 days after inoculation of F. oxysporum, numbers of Actinomycetes, fungi and bacteria were considerably increased, whereas F. oxysporum was decreased in the organic matter amended-soils compared with natural control soils.

  • PDF

Effect of Chitosan, Wood Vinegar and EM on Microorganisms in Soil and Early Growth of Tomato (키토산, 목초액 및 EM 처리가 토양 미생물상의 변화 및 토마토의 초기생육에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Kim, Jeong-Han;Kim, Doh-Hoon;Chung, Won-Bok
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.433-443
    • /
    • 2006
  • With treatment of Kitosan, Wood vinegear and EM(effective microoganism) which farmers call it as substance in fertilizing, conditioning and disease control substances, authors in vestigated on microorganisms change in soil and ealy growth characteristics of tomato. The results were summarized as follows: Among foliar application of kitosan, wood vinegear and EM(effective microoganism) treatments diluted by chitosan 500 times solution level was effective considering growth of tomato as compared other dilutions and control plot. Change of microorganism number in the soil for cultivation of tomato was increased with microorganism treatment plot as compared with control plot. Specially chitosan 500 times solution level showes the most significant effect.

  • PDF

The Effect of Chitosan and Wood Vinegar Treatment on the Growth of Eggplant and Leaf Lettuce (키토산과 목초액 처리가 가지 및 잎상추의 생육에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Cho, Mi-Yong;Seo, Jung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.4
    • /
    • pp.437-452
    • /
    • 2007
  • From the experiments on the effect of chitosan and wood vinegar, which are environment-friendly materials, on the growth of eggplant and leaf lettuce, the following results were obtained. 1. The effect of chitosan and wood vinegar treatment on the growth of eggplant 1) There was no difference in soil component elements before and after treatment with chitosan and wood vinegar. The total number of microorganisms tended to increase after treatment with chitosan and wood vinegar, while the number of bacteria increased among microorganisms. However, there was no consistent tendency in the number of Acinomycetes, fungi, and trichodema between treatments. 2) The growth and the yield of eggplant increased compared with the control plot in both the chitosan-treated plot and the wood vinegar-treated plot. However, there was no significant difference between the treatments. The yield of eggplant per 10a increased in chitosan- and wood vinegar-treated plots compared with the controlled plot. There was no significant difference in treatments, however, the plot treated with 800 times-diluted solution showed a higher growth. 2. The effect of chitosan and wood vinegar treatment on the growth of leaf lettuce 1) There was no difference in soil component elements before and after treatment with chitosan and wood vinegar. The number of bacteria increased among microorganisms. However, there was no consistent tendency in the number of Acinomycetes, fungi, and trichodema between treatments. 2) The growth of leaf lettuce in both chitosan-treated plot and wood vinegar-treated plot increased compared with the control plot, however, there was no significant difference between the treatments. On the whole, the plot treated with greater concentration showed a higher growth.

  • PDF

Effects of Condensed Molasses Soluble on Chemical and Biological Properties of Soil, and Nitrogen Mineralization (당밀농축용액이 토양의 화학 및 생물학적 성질과 질소의 무기화에 미치는 영향)

  • Kang, Gwan-Ho;Kang, Byung-Hwa;Park, Ki-Do;Chung, Keun-Yook;Sohn, Bo-Kyoon;Ha, Ho-Sung;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.124-130
    • /
    • 2004
  • This study was carried out to evaluate the effects of condensed molasses soluble (CMS) treatment on the mineralization of N, chemical properties and soil microbial population under the incubation condition with unsaturated water content during the 7 weeks at $25^{\circ}C$ in the different levels of CMS application. The results indicated that the total nitrogen content of soil was increased with increasing application rate of CMS and this trend was maintained up to 7 weeks. With CMS treatment content of $NH_4-N$ was gradually decreased. However, the content of $NO_3-N$ in the soil was gradually increased with incubation time due to the nitrification under the unsturated water condition. The CMS treatment increased the microbial populations such as bacteria, actinomycetes and fungi, which may be due to the availability of more nutrients such as amino acids, sugars and other minor elements from CMS. The pH of soil was found to be reduced by the addition of CMS, Whereas, electrical conduvtivity of soil was correspondingly increased with increasing application rate of CMS.

Residue of Herbicide Napropamide and Change of Microorganism in Upland Soil Under Different Environmental Conditions (환경조건 차이에 따른 밭 토양중 제초제 Napropamide의 잔류 및 토양미생물상 변화)

  • Han, S.S.;Jeong, J.H.;Choi, C.G.
    • Korean Journal of Weed Science
    • /
    • v.14 no.4
    • /
    • pp.298-313
    • /
    • 1994
  • Residue of herbicide napropamide [N,N-dimethyl-2-(1-napthoxy)-propionamide] and change of micro-organism were investigated in upland soil under different environmental conditions. Half-lives of degradation were 28.3 days in the sterile soil and 14.6 days in the nonsterile soil, respectively. These results suggest that microorganism remarkably affected the decomposition of napropamide. Napropamide was rapidly degraded in order of 60% > 80% ${\geq}$ 40% soil moisture content of field water-holding capacity. Numbers of bacteria and total microbes in 60% moisture content was more than those in 40% moisture content. The more the napropamide degradation was rapid in lower soil pH. The total number of microorganism increased by lapse of time after treatment of napropamide at pH 5.5. The decomposition rate of napropamide was rapid in the order of $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$. At $17^{\circ}C$ of soil temperature actinomycetes in napropamide treatment plot was more than these in nontreatment plot and also at $27^{\circ}C$ and $37^{\circ}C$ bacteria in napropamide treatment plot was more than those in nontreatment plot. Napropamide degradation was more rapid and number of microorganism was more abundant at the concentration of 10ppm than at that of 20ppm. The half-life of napropamide was longer in the clay loam soil than in the silty loam soil. The half times in laboratory test than in upland field. Numbers of microbes in the experiment under all the test environmental condition was not significantly different between treatment and nontreatment of napropamide.

  • PDF