Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.4.589

In vitro Antimicrobial Activity of a New Isolate Streptomyces sp. BCNU 1030  

Bang, Ji-Hun (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University)
Choi, Hye-Jung (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University)
Ahn, Cheol-Soo (Cho-A Pharm. Co, LTD.)
Kim, Dong-Wan (Department of Microbiology, Changwon National University)
Jeong, Yong-Kee (Department of Biotechnology, Dong-A University)
Joo, Woo-Hong (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University)
Publication Information
Journal of Life Science / v.21, no.4, 2011 , pp. 589-595 More about this Journal
Abstract
This work focused on screening and characterizing antibiotic-producing actinomycetes to develop new antibiotics that can overcome the growing resistance of disease-causing microbes. One-hundred actinomycetes strains were isolated from soil samples from Chungcheongbuk-do, Korea using various kinds of actinomycetes isolation media, including a starch casein agar medium and potato dextrose agar (PDA). Among them, strain BCNU 1030 was determined to show strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Biochemical, physiological, and 16S rRNA sequence analyses indicated that strain BCNU 1030 belonged to the genus Streptomyces. Strain BCNU 1030 exhibited antibiotic activity against a wide range of bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of BCNU 1030 dichloromethane extract was determined to be $0.78\;{\mu}g/ml$ for MRSA CCARM 3090. Therefore, Streptomyces sp. BCNU 1030 has potential for anti-MRSA drug development.
Keywords
Antibacterial activity; methicillin-resistant Staphylococcus aureus; minimum inhibitory concentration; Streptomyces;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Locci, R. 1989. Streptomycetes and related genera, pp. 2451-2492. In Williams, S. T., M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of systematic bacteriology, 9th, vol. 4, Williams & Willikins, Baltimore.
2 Lyon, B. R. and R. Skurray. 1987. Antimicrobial resistance of Staphylococcus aureus: Genetic basis. Microbiol. Rev. 51, 88-134.
3 Miyado, S. 1993. Research on antibiotic screening in Japan over the last decade: A producing microorganism approach. Actinomycelogica 7, 100-106.   DOI
4 Nagai, K., K. Kanigiri, N. Arao, K. Suzumura, Y. Kawano, M. Yamaoka, H. Zhang, H. Zhang, M. Watanabe, and K. Suzuki. 2003. Novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge. J. Antibiot. (Tokyo) 56, 123-128.   DOI   ScienceOn
5 Norazli, G., M. Z. Noraziah, S. Vikineswary, B. Norhidayah, F. D. Basri, H. H. Lian, and N. M. Sidik. 2008. Isolation and characterization of a novel endophytic Streptomyces SUK 06 with antimicrobial activity from Malaysian Plant. Asian J. Plant Sci. 7, 189-194.   DOI
6 Ogawa, H. 1981. Antibiotic resistance in pathogenic and producing bacteria with special reference to ${\beta}$-lactam antibiotics. Micrbiol. Rev. 45, 591-619.
7 Park, S. G., Y. O. Hwang, J. H. Jung, and K. M. Lee. 2001. Biological characteristics of Staphylococcus aureus isolated from food-borne patients in Seoul. J. Fd. Hyg. Safety 16, 159-167.   과학기술학회마을
8 Castillo, U., J. K. Harper, G. A. Strobel, J. Sears, K. Alesi, E. Ford, J. Lin, M. Hunter, M. Maranta, H. Ge, D. Yaver, J. B. Jensen, H. Porter, R. Robinson, D. Millar, W. M. Hess, M. Condron, and D. Teplow. 2005. Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 3 an endophyte of Grevillea pteridifolia. FEMS Microbiol. Lett. 224, 183-190.
9 Chesneau, O., A. Morvan, and N. E. Solh. 2000. Retrospective screening for heterogeneous vancomycin resistance in diverse Staphylococcus aureus clones disseminated in French hospitals. J. Antimicrob. Chemother. 45, 887-890.   DOI
10 Esnard, J., T. L. Potter, and B. M. Zuckerman. 1995. Streptomyces costaricanus sp. nov. isolated from nematode suppressive soil. Int. J. Syst. Bacteriol. 45, 775-779.   DOI
11 Han, S. J., P. M. Jung, H. G. Kim, E. H. Hwang, and I. W. Seong. 1999. Multiple intestinal ulcerations and perforations secondary to methicillin-resistant Staphylococcus aureus enteritis in infants. J. Pediatr. Surg. 34, 381-386.   DOI
12 Herwaldt, L., L. Boyken, and M. Pfaller. 1991. In vitro selection of resistance to vancomycin in bloodstream isolates of Staphylococcus haemolyticus and Staphylococcus epidermidis. Eur. J. Clin. Microbiol. Infect. Dis. 10, 1007-1012.   DOI
13 Howard, T. D. 1953. The production of neomycin by Streptomyces fradiae in synthetic media. Appl. Microbiol. 1, 103-106.
14 Higginbothama, J. and C. D. Murphy. 2010. Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiol. Res. 165, 82-86.   DOI
15 Igarashi, M., T. Shida, Y. Sasaki, N. Kinoshita, H. Naganawa, M. Hamada, and T. Takeuchi. 1999. Vinylamycin, a new depsipeptide antibiotic, from Streptomyces sp. J. Antibiot. (Tokyo) 52, 873-879.   DOI   ScienceOn
16 Kang, M. W. and Y. R. Kim. 1993. Infection of Methicillin resistant Staphylococcus aureus. J. Korean Soc. Chemother. 11, 17-26.
17 Perez, C., M. Pauli, and P. Bazerque. 1990. An antibiotics assay by agar well diffusion method. Acta Biol. Med. Exp. 15, 113-115.
18 Alanis, A. J. 2005. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res. 36, 697-705.   DOI
19 Castillo, U. F., G. A. Strobel, E. J. Ford, W. M. Hess, H. Porter, J. B. Jensen, H. Albert, R. Robison, M. A. Condron, D. B. Teplow, D. Stevens, and D. Yaver. 2002. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 3 endophytic on Kennedia nigriscans. Microbiology. 148, 2675-2685.
20 Park, S. U. and J. B. Kim. 2000. Characterization and frequency of vancomycin resistance in Staphylococcus aureus isolated in korea. Korean J. Biomed. Lab. Sci. 6, 201-208   과학기술학회마을
21 Swart, E. A., D. Hutchison, and S. A. Waksman. 1949. Neomycin, recovery and purification. Arch. Biochem. 24, 92-103.
22 Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313-340.   DOI
23 Turos, E., T. E. Long, M. I. Konaklieva, C. Coates, J. Y. Shim, S. Dickey, D. V. Lim, and A. Cannons. 2002. N-thiolated beta-lactams: novel antibacterial agents for methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. Lett. 12, 2229-2231.   DOI   ScienceOn
24 Waksman, S. A., H. C. Reilly, and D. B. Johnstone. 1946. Isolation of streptomycin-producing strains of Streptomyces griseus. J. Bacteriol. 52, 393-397.
25 Watve, M. G., R. Tickoo, M. M. Jog, and B. D. Bhole. 2001. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176, 386-390.   DOI
26 Yoo, J. C., J. H. Kim, J. W. Ha, N. S. Park, J. K. Sohng, J. W. Lee, S. C. Park, M. S. Kim, and C. N. Seong. 2007. Production and biological activity of laidlomycin, anti-MRSA/VRE antibiotic from Streptomyces sp. CS684. J. Microbiol. 45, 6-10.   과학기술학회마을
27 Yun, B. D., C. S. Park, I. G. Lee, H. S. Ko, H. M. Oh, H. S. Kim, C. Y. Ahn, and M. S. Kim. 2006. Streptomyces costaricanus VSC-67 KCTC 10910BP active against plant fungal pathogens. Korea patent 10-2006-002611.
28 Ketaki, B. and S. K. Majumdar. 1975. Mineral nutrition of Streptomyces kanamyceticus for kanamycin formation. Antimicrob. Agents Chemother. 8, 391-395.   DOI   ScienceOn
29 Koffler, H., S. G. Knight, and W. C. Frazier. 1947. The effect of certain mineral elements on the production of penicillin in shake flasks. J. Bacteriol. 53, 115-123.