• Title/Summary/Keyword: 토압계

Search Result 39, Processing Time 0.024 seconds

An Experimental Study on the Bearing Capacity and Failure Behavior of Composite Ground Reinforced by RAP Method (RAP 복합지반의 지지력 및 파괴거동에 관한 실험적 연구)

  • 천병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.127-134
    • /
    • 2004
  • Rammed Aggregate Pier (RAP) has extensive applicability as for a foundation of structures. In this study, bearing capacity of the reinforced ground by RAP and the failure behavior of RAP are investigated through experiments. RAPs with diameters of 45, 60, 70 mm were installed in sand, of which relative densities are 60, 70, 90%. Then, two columns of pressure gauges, near the RAPs and one diameter off from the center of piers, are installed 5, 10, 15, 20, 25, 30 cm from the surface of the ground. The test results show that maximum lateral earth pressure is observed near 5∼10 cm (1.0∼2.0D) from the surface, which indicates the occurrence of bulging failure type. In addition, deformation of RAP in radial direction increases with lower relative density of the ground. Furthermore, lateral stress distribution decreases with depth.

A Study on the Behavior of Reinforced Earth Retaining Walls by Shaking Table Test (진동대 실험을 이용한 보강토 옹벽의 거동특성 연구)

  • Yoon, Won-Sub;Chae, Young-Su;Shim, Jae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.49-59
    • /
    • 2011
  • In order to understand evaluation of the seismic stability of a reinforced earth retaining, we made chambers of 1:10 (the ratio of the miniature), considering the law of similarity based on drawings of representative cross sections. And we measured an increase in acceleration, earth pressure, and displacement after applying Hachinohe wave (long period), Ofunato wave (short period), and artificial wave, complying with the domestic standards, in order to evaluate the external stability of the reinforced earth retaining wall during earthquake based on the measurements. As a result, the unreinforced earth retaining wall collapsed at 2 g of seismic acceleration. But the reinforced earth retaining wall was evaluated to ensure proper stability as well, with respect to the earth pressure gauge, the increments of earth pressure tend to be raised significantly in the upper than the lower and showed a similar characteristic of behavior in previous theory.

A Study on the Soil Deformation Due to a Pile Penetration in Sandy Soils. (사질토 지반에서의 말뚝관입으로 인한 흙의 변형에 관한 연구)

  • 백세환;이장덕
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.31-40
    • /
    • 1990
  • The soil deformation due to a pile penetration in sandy soils has been analysed in model pile penetration tests. To simulate the actual ground conditions, especially the in-situ stress levee the tests were performed in a calibration chamber where both the vertical and the horizontal stresses could be applied separately. The deformation was monitored via 5 earth pressure cells. The results, were compared with the theortical values based on the theory of cavity expansion.

  • PDF

Evaluation of the Installation Mechanism of the Micropile with the Base Expansion Structure Using a Centrifuge Model Test (원심모형실험을 활용한 선단확장형 마이크로파일의 설치 메커니즘 평가)

  • Kim, Jae-Hyun;Kim, Seok-Jung;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.37-49
    • /
    • 2021
  • Micropiles are widely used in construction field to enhance bearing capacity and reduce settlement of existing foundation. It has various benefits such as low construction expense, simple installation process, and small construction equipment. Recently, new microple equipped with the base expansion structure at the end has been developed to improve the foundation bearing capacity. The improvement of load capacity can be conceptually achieved by expanding the base expansion structure when a load is applied to the micropile. However, the expansion mechanism of the base expansion structure and the improvement of load capacity of the micropile were not yet experimentally validated. Therefore, in this study, a series of centrifuge model tests was performed to evaluate the effect of the base expansion structure on the improvement of load capacity. Two types of soil, sand and weathered rock, were prepared and the loading tests were performed using the real micropile with the base expansion structure. During the tests, the earth pressures surrounding the base expansion structure were monitored. As a result, when a load of 30 kN was applied to the micropile, the increase in the ratio of the horizontal to vertical pressure increment (∆σh/∆σ𝜈) ranged from 0.4 to 0.58 in sand and ∆σh/∆σ𝜈 = 0.19 in weathered rock, respectively. Therefore, it can be concluded that the increase in the horizontal earth pressure adjacent to the base expansion structure will improve the bearing capacity of the micropile.

Stress Release Zone Around Sub-structure Constructed by Non-open Cut Methods (비개착공법으로 건설된 지하구조물 주변 지반 응력이완영역 규명)

  • Seo, Ho-Sung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.480-488
    • /
    • 2016
  • For the development of areas around railway lines, subsurface construction using the non-open cut method under the railway has recently been increased. However, when a structure under a railway is constructed, the stress release of the ground is not considered an important factor in the design. In this study, laboratory tests were conducted to determine a zone of stress relaxation. Field tests using an inclinometer were performed to measure the horizontal displacement of the ground during non-open cut construction. The stress release zone and the subgrade stiffness were investigated by numerical analysis. The results of the laboratory tests indicated that the failure zone in the ground was similar to a Rankine's active earth pressure zone. The measured data from the inclinometer in the field tests showed that displacements started when a steel pipe was pushed into the ground. The results of numerical analysis show that lateral earth pressure was also close to Rankine's active earth pressure. The roadbed support stiffness of the soil around the structure decreased to 40% of the original value. The ground around the subsurface structure constructed using nonopen cut methods should be reinforced to maintain the running stability of train.

An Analytical Study on the Durability Standard of Ground Structures Monitoring Sensors (지반구조물 계측센서의 내구연한 기준에 대한 분석적 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Purpose & Method: The purpose of this study is the theoretical study on the durability standard of ground structures monitoring sensors. A survey on the durability criteria for construction monitoring sensors of domestic construction companies and the income tax implementation regulations, the standard years of contents such as buildings and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. Result: The durability criterion such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the ground structure, is 8 to 10 years. Conclusion: The actual durability analysis by comparing the reliability of various monitoring sensors installed in dams at home and abroad, As a result of comprehensive study on the loss and damage rate of the maintenance monitoring sensor installed in the tunnel, the proper durability period of the built-in type monitoring sensor such as domestic pore pressure meter and earth pressure meter installed in the structure or the ground is 5 to 8 years it seems reasonable.

Backfill Materials for Underground Facility with Recycling Materials - Small-Scaled Laboratory Chamber Test and FEM Analysis (재활용재료를 이용한 지하매설물용 뒤채움재 - 모형챔버실험 및 유한요소해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.97-103
    • /
    • 2011
  • In this research, a small-scaled laboratory test and FEM analysis have been carried out to evaluate the feasibility of field construction with couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers. A static loading, which simulates the real traffic load, was adopted in lab test. The test was carried out, according to simulated field construction stages, such as excavation, bedding materials and pipe installation, placing and curing of controlled low strength materials, and simulated traffic loading. Couple of measuring instruments were adopted. The maximum vertical and horizontal deformations were 0.83% and 1.09%, during placing the CLSM. The measured vertical and horizontal deformations with curing time were 0.603mm and 0.676mm, respectively. The reduction effect of vertical and lateral earth pressure was relatively big. Also, FEM analysis was carried out to get the deformation, earth pressure and strain of PVC with different Controlled Low Strength Materials(CLSM) materials.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

Effects of Facing Types and Construction Procedures on the Stability of Reinforced Earth Wall (전면벽 및 축조순서가 보강토옹벽의 안정성에 미치는 영향)

  • Lim Yu-Jin;Jung Jong-Hong;Park Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.119-126
    • /
    • 2004
  • A small-scale reinforced earth wall was constructed in a laboratory to investigate the effect of wall rigidity and of construction sequence on the wall. A full continuous wall facing and a discrete wall facing were designed and constructed for tests. These two different facing systems should adapt different construction procedures due to their different facing shapes. The model wall was built with geo-grid reinforcement, sand, and facings on rigid surface. The model wall was instrumented with earth pressure gages, LVDTs, and strain gages. The experimental results have shown differences in wall behavior related to construction sequence and types of wall facing. It is found in this study that the reinforced earth wall built with full continuous facing is safer than the reinforced earth wall built with the discrete wall facing.

An Experiment of Consolidation Behavior for Partly and Fully Penetrated SCP Ground

  • Jung, Jong-Bum;Moriwaki, Takeo;Lee, Kang-Il;Kang, Kwon-Su;Park, Byong-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.3-16
    • /
    • 1999
  • A series of model tests was conducted to investigate the one-dimensional consolidation behavior of an improved ground where sand compaction piles(SCP) were either fully or partly installed in the model clay ground. In order to check the one-dimensional consolidation settlement and stress concentration ratios, earth pressure, pore pressure transducers and dial gauges were installed in the model clay ground. The test results revealed that the consolidation settlement of the partly penetrated SCP ground was larger than that of the fully penetrated SCP ground, and the stress concentration ratios (m) of the fully penetrated SCP ground were higher than these of the partly penetrated SCP ground. The stress concentration ratio was decreasing with the increase in the penetration depth of SCP.

  • PDF