• Title/Summary/Keyword: 토석류 시뮬레이션

Search Result 14, Processing Time 0.025 seconds

Development of GIS-based Debris Flow Simulation Program (GIS 기반의 토석류 시뮬레이션 프로그램 개발)

  • Wie, Gwang-Jae;Lee, Young-Kyun;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • This study describes a development of GIS-based program called Debris Flow Analyzer for simulating the hazard extent of debris flow on the assumption that is uniform continuous, incompressible, unsteady. The Debris Flow Analyzer was designed to process debris flow numerical simulation with Finite Difference Formulation; smoothed DEM, slope, debris flow directions, extract valley, debris volume, water volume, debris flow moving speed, effective viscosity, dynamic friction coefficient. Also, it is expected that we can be improved the inform of debris flow hazard map by Google Earth.

The Algorithm For The Flow Of Debris Through Machine Learning (머신러닝 기법을 통한 토석류 흐름 구현 알고리즘)

  • Moon, Ju-Hwan;Yoon, Hong-Sik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.366-368
    • /
    • 2017
  • 본 연구는 국내 산사태 발생 데이터를 기반으로 시뮬레이션 모델을 머신러닝 기법을 통해 학습시켜 산사태의 토석류 흐름을 구현하는 알고리즘에 대한 연구이다. 전통적인 프로그래밍을 통한 산사태 시뮬레이션 모델 개발을 해당 시스템에 더 많은 고도의 물리학 법칙을 통합 적용시켜 토석류의 흐름을 공학적으로 재현해내는데 중점을 두고 개발이 진행되지만, 본 연구에서 다루는 머신러닝 기법을 통한 산사태 시뮬레이션 모델 개발의 경우 시스템에 입력되는 데이터를 기반으로한 학습을 통하여 토석류 흐름에 영향을 미치는 변수와 파라메터를 산출하고 정의는데 중점을 두고 개발이 진행된다. 본 연구에서 산사태 시뮬레이션 모델 개발에 활용하는 머신러닝 알고리즘은 강화학습 알고리즘으로 기존 산사태 발생 지점을 기반으로 에이전트를 설정해 시간에 따라 시뮬레이션의 각 스텝에서 토석류의 흐름 즉 액션을 환경에 따른 가중치를 기준으로 산정하게 된다. 여기서 환경에 따른 가중치는 시뮬레이션 모델에 정의된 메서드에 따라 산정된다. 시간이 목표값에 도달하여 결과가 출력되면 출력된 결과와 해당 산사태 발생 지점의 실제 산사태 피해 지역 데이터 즉 시뮬레이션 결과 이상치와의 비교를 통하여 시뮬레이션을 평가하게 된다. 이러한 평가는 시뮬레이션 데이터와 실제 데이터간의 유사도 비교를 통해 손실률을 도출하게 되고 이러한 손실률을 경사하강법등의 최적화 알고리즘을 통해 최소화 하여 입력된 데이터를 기반으로한 최적의 토석류 흐름 구현 알고리즘을 도출한다.

  • PDF

GIS-Based Analysis of the Debris Flow Occurrence Possibility Using an Airborne LiDAR DEM around Pyeongchang-Gun, Kangwon-Do (항공라이다 DEM을 이용한 강원도 평창군 일원의 GIS 기반의 토석류 발생가능성 분석)

  • Lee, In-Ji;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.50-66
    • /
    • 2010
  • In this study, we performed a GIS-based debris flow simulation using the high-resolution airborne LiDAR DEM in order to establish the effective and resonable debris prevention plans in Korea. To do so, we set a study area to an specific region over Pyeochang-gun in Kangwon-do which showed the extreme rugged distribution of topography and simulated a possibility of debris flow occurrence in this area using a GIS-based numerical simulation program which was developed by applying the finite difference method. After that, we also performed the debris flow simulation by SINMAP and geomorphic analysis method in the same region and compared each result with that of GIS-based debris simulation for verifying the reliability.

Analysis of Airborne LiDAR-Based Debris Flow Erosion and Deposit Model (항공LiDAR 자료를 이용한 토석류 침식 및 퇴적모델 분석)

  • Won, Sang Yeon;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • The 2011 debris flow in Mt. Umyeonsan in Seoul, South Korea caused significant damages to the surrounding urban area, unlike other similar incidents reported to have occurred in the past in the country's mountainous regions. Accordingly, landslides and debris flows cause damage in various surroundings, regardless of mountainous area and urban area, at a great speed and with enormous impact. Hence, many researchers attempted to forecast the extent of impact of debris flows to help minimize the damage. The most fundamental part in forecasting the impact extent of debris flow is to understand the debris flow behavior and sedimentation mechanism in complex three-dimensional topography. To understand sedimentation mechanism, in particular, it is necessary to calculate the amount of energy and erosion according to debris flow behavior. The previously developed debris flow models, however, are limited in their ability to calculate the erosion amount of debris flow. This study calculated the extent of damage caused by a massive debris flow that occurred in 2011 in Seoul's urban area adjacent to Mt. Umyeonsan by using DEM, created from aerial photography and airborne LiDAR data, for both before and after the damage; and developed and compared a debris flow behavioral analysis model that can assess the amount of erosion based on energy theory. In addition, simulations using the existing debris flow model (RWM, Debris 2D) and a comprehensive comparison of debris flow-stricken areas were performed in the same study area.

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas (2상 유한체적모델 기반의 광역적 토석류 유동해석기법)

  • Jeong, Sangseom;Hong, Moonhyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.5-20
    • /
    • 2022
  • To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.

GIS-based Debris Flow Risk Assessment (GIS 기반 토석류 위험도 평가)

  • Lee, Hanna;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.139-147
    • /
    • 2023
  • As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

Sensitivity Analysis of Debris Flow Simulation in Flo-2D Using Flow Discharge and Topographic Information (유량과 지형조건에 따른 Flo-2D에서의 토석류 확산 민감도 분석)

  • Kim, Namgyun;Jun, Byonghee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.547-558
    • /
    • 2022
  • In August 2020, a debris flow occurred in Gokseon, Jeollanam-do, that resulted in the death of five residents. In this study area, high-resolution 0.03 m topographic information was generated through photogrammetry, and the amount of soil movement/loss was measured. In addition, sensitivity analysis was performed for flow depth, flow velocity, and debris flow area with the program Flo-2D using the difference in simulation parameter that discharge and topographic information. Wth increasing debris flow input discharge, increases were seen in flow depth, flow velocity, and debris flow area, as ell as in the gap in results from high-resolution topographic information and low-resolution topographic information. Also, when high-resolution topographic information was used, the results were similar to the actual (measured) flow direction of the debris flow. Therefore, the application of high-resolution topographic information increases the accuracy of the debris flow analysis results compared with low-resolution information. Results could be further imporved in the future by considering geological information such as yield stress and viscosity.

Movements Simulation of Debris Flow for Prediction of Mountain Disasters Risk Zone (산지재해 위험구간 예측을 위한 토석류 흐름 모의)

  • Chae Yeon Oh;Kye Won Jun;Bae Dong Kang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.

Terrain Data Construction and FLO-2D Modeling of the Debris-Flow Occurrences Area (토석류 발생지역 지형자료 구축 및 FLO-2D 모델링)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 2019
  • Occurrences of debris flow are a serious danger to roads and residential located in mountainous areas and cause a lot of property loss. In this study, two basins were selected and spatial data were constructed to simulate the occurred debris flow from mountainous areas. The first basin was to use the Terrestrial LiDAR to scan the debris flow occurrence section and to build terrain data. For the second basin, use drones the sediment in the basin was photographed and DSM (Digital surface model) was generated. And to analyze the effect of the occurrence of debris flow on downstream side, FLO-2D, two-dimensional commercial model, was used to simulate the flow region of the debris flow. And it was compared with the sedimentation area of terrestrial LiDAR and drone measurement data.

Landslide Risk Analysis due to Development of Mountain Area (산지지역 개발에 의한 산사태 위험 분석)

  • Namgyun Kim;Yunseong Park
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • In this study, the risk of landslides was analyzed for planned development sites in mountainous areas. Field survey was conducted on the research area with the slope and valley site. The criteria for evaluating the risk of landslides in the field survey were based on the risk assessment table of the Korea Forest Service Notice No. 2023-10. The research area has 13 slopes and 11 valleys. As a result of evaluating the risk area, two slopes and two valley were found to be dangerous sites in each. Numerical simulation was performed on the investigated risk areas to predict the spread of damage. The debris flow was simulated to have an affect on roads and buildings located in the lower part of the basin, and it was determined that a disaster prevention facility was nacessary to minimize damage. This information can be used to determine the impact of disasters before carrying out mountain development.