• Title/Summary/Keyword: 토목BIM

Search Result 137, Processing Time 0.025 seconds

A Method for Information Management of Defects in Bridge Superstructure Using BIM-COBie (BIM-COBie를 활용한 교량 상부구조의 손상정보 관리 방법)

  • Lee, Sangho;Lee, Jung-Bin;Tak, Ho-Kyun;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.165-173
    • /
    • 2023
  • The data management and the evaluation of defects in the bridge are generally conducted based on inspection and diagnosis data, including the exterior damage map and defect quantity table prepared by periodic inspection. Since most of these data are written in 2D-based documents and are difficult to digitize in a standardized manner, it is challenging to utilize them beyond the defined functionality. This study proposed methods to efficiently build a BIM (Building Information Modeling)-based bridge damage model from raw data of inspection report and to manage and utilize the damage information linking to bridge model through the spread sheet data generated by COBie (Construction Operations Building Information Exchange). In addition, a method to conduct the condition assessment of defects in bridge was proposed based on an automatic evaluation process using digitized bridge member and damage information. The proposed methods were tested using superstructure of PSC-I girder concrete bridge, and the efficiency and effectiveness of the methods were verified.

Accuracy-based Evaluation of the Utilization of Spatial Information for BIM Application (BIM 적용을 위한 공간정보의 정확도 기반 활용성 평가)

  • Doo-Pyo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.669-678
    • /
    • 2023
  • Recently, spatial information has been applied to various fields and its usability is increasing day by day. In particular, in the field of civil engineering and construction, BIM based on spatial information is being applied to all construction industries and related research has been conducted. BIM is a technology that utilizes spatial information from the design phase and aids in the construction and maintenance of buildings, including the management of their attributes. However, to apply BIM technology to existing buildings, it takes a lot of time and money to produce models based on design drawings along with current surveying. In this study, quantitative and qualitative analysis was conducted to determine the applicability of the acquired data and the applicability of BIM by generating data and analyzing the accuracy using UAV images and ground lidar, which are representative spatial information acquisition methods. Quantitative analysis revealed that TLS (Terrestrial Laser Scanner) showed reliable accuracy in both planar and elevation measurements, whereas unmanned aerial images exhibited lower accuracy in elevation measurements, resulting in reduced reliability. Qualitative analysis indicated that neither TLS nor unmanned aerial images alone provided perfect completeness. However, the combination of both spatial information sources, tailored to specific needs, resulted in the most comprehensive completeness. Therefore, it is concluded that the appropriate utilization of spatial information acquired through unmanned aerial images and TLS holds the potential for application in the fields of BIM and reverse engineering.

Reliability Analysis and Utilization of BIM-based Highway Construction Output Volume (BIM기반 고속도로 공사 물량산출 신뢰성 검토 및 활용)

  • Jung, Guk-Young;Woo, Jeong-Won;Kang, Kyeong-Don;Shin, Jae-Choul
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 2013
  • In case of applying the BIM method in the civil engineering of irregularly shaped structure, BIM method began to be introduced in the current building engineering area compared with the expected effects of the relatively high construction productivity has been recognized. In this paper, I have developed quantity calculation algorithms applying it to earthwork and bridge construction, tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D-BIM Modeling quantity calculation. Structure work in which errors occurred in range between -6.28% ~ 5.17%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14.36% ~ 13.07% of earthwork quantity calculation. It's benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed. In addition, as the beginning phase of information integration, quantity document automation program has been developed for activation of BIM. And automatically enter the program code number, linkage and manual volume calculation program, quantity document automation programs, such as the development is now underway, and step-by-step procedures and methods are presented.

Information Modeling of Railway Track using Information Iinkage of Railway Alignment and Alignment-based Objects (철도 선형중심의 객체 정보연계를 통한 철도 궤도부 정보모델 생성 방안)

  • Kwon, Tae Ho;Park, Sang I.;Shin, Min Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.507-514
    • /
    • 2017
  • As BIM has been widely used in the field of architecture, efforts to apply BIM to civil engineering structures are increasing rapidly. Since commercial BIM softwares are focused on building structure, it is difficult to apply to alignment-based civil infrastructures. In this study, we proposed a method to generate an information model that reflects cant by sharing information between alignment-centered modeling tools and BIM authoring tools to manage information of railway track. The railway track modeling process consists of classifying structures into continuous and non-continuous structures, creating continuous structures by alignment-centered modeling tools, and using the shared alignment information to generate information model of the non-continuous structures. Non-continuous structures were generated by an algorithm that calculates the position and rotation information of each structure based on discretized railway alignment and cant information transmitted to the BIM authoring tools. The availabilities of proposed method were studied by applying to the osong test-line. Using the test model, it was shown that the objects were identified, the properties were extracted, and the quantities of each structure were calculated.

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.

BIM based Design of Steel Box Girder (STEEL BOX 교량 상부구조의 BIM기반 설계)

  • Lee, Jin-Kyoung;Lee, Heon-Min;You, Jae-Myoung;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.1 no.2
    • /
    • pp.6-11
    • /
    • 2011
  • In domestic construction industry, there is lack of the communication between planning, design, construction and maintenance. This problem makes the omission of information and the loss of cost. Therefore, the introduction of BIM can be a solution about that. BIM manages all information generated during all life-cycle of a structure and consequently maximizes the efficiency of utilizing information. This is done through 3D information model associated with a three-dimensional(3D) parametric CAD. This study proposes the design process of steel box bridge for structural design work of bridge construction project based on BIM. This process has 3D modeling progress done by using the information decided in design phase. When the subject for the proposed process is superstructure of steel box bridge in construction, the structural calculation sheet can be derived with the structural design process based on BIM.

Extension of the IFC Schema for Road Subsidiary Facility (도로 부대시설 수용을 위한 IFC 스키마 확장 개발)

  • Cho, Geun-Ha;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7385-7392
    • /
    • 2014
  • Extension IFC schema of subsidiary facilities were developed for the purpose of establishing an information model standard for roads. The IFC entities, types and properties for subsidiary facilities were defined through an analysis of the road design documents for the extraction physical component and design information. The converter and viewer for applying the new schema were then developed. Subsidiary facilities BIM models were converted to new IFC models to verify the research results. Standard BIM-based delivery and verification systems are enabled by using a standard model converted by new schema. Furthermore, it can establish an open BIM environment using an IFC over the entire life cycle of the civil engineering project.

The Development Method of IFC Extension Elements using Work Breakdown Structure in River Fields (작업분류체계를 활용한 하천분야 IFC 확장 개발방안)

  • Won, Jisun;Shin, Jaeyoung;Moon, Hyoun-Seok;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2018
  • As the application of BIM (Building Information Modeling) to the civil sector has become practical, and mandatory for road projects, the standardization, development of systems, etc. for the application and operation of BIM are required. In particular, it is important to develop BIM data standards for producing, sharing and managing the lifecycle data of civil facilities because they are commonly national public facilities. The BIM data standards have been developed by utilizing or extending IFC (Industry Foundation Classes), which is an international standard, but schema extensions of river facilities has not been developed thus far. This study proposes an approach to an IFC extension for river facilities using the WBS (Work Breakdown Structure) as a fundamental study for IFC-based schema extension in the river field. For this purpose, the research was carried out as follows. First, the IFC extension development method was selected to represent the river facilities by analyzing the existing IFC structure and previous research cases for the IFC extension. Second, extended elements of the river facilities were identified through an analysis of the WBS and classified according to the high-level structure of the IFC schema. Third, the classified elements were arranged based on the IFC hierarchy and the IFC schema extension for river facilities was established. Based on the suggested extension method of IFC schema, this study developed the schema by defining the element components and parts of river facilities, such as distribution flow elements and deriving their detailed types and properties.