• Title/Summary/Keyword: 토목시설물

Search Result 317, Processing Time 0.025 seconds

Cost Reduction Measure for River Water Quality Management by Cooperation between Local Governments:a Case of the Youngsan River (지자체간 협조를 통한 하천수질관리 비용절감 방안: 영산강을 대상으로)

  • Yeo, Kyu Dong;Jo, Eun Hui;Jung, Young Hun;Yi, Choong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.273-285
    • /
    • 2012
  • Current TMDL based on the 'Polluter Pays Principle' in Republic of Korea is individually operated by each local government for the designed allocated pollution load of unit watershed and unit district. However, unlike the motion of the air contaminants, the polluted contaminants in a river move from upstream to downstream, and a river can affect to districts more than two. In addition, a decision making on the construction of a sewage treatment facilities follows the concept of 'economy of scale'. These reasons support the collaboration among local governments in order to reduce the costs in improving water quality. This study suggested a method to reduce water quality management cost by redistributing reduction load considering cost-effectiveness for an entire watershed. The assessment on the suggested method is conducted in Youngsan river watershed. Without variation in total load, reduction load assigned for unit watershed and unit district is retributed in the region where pollutant source is concentrated, and then water quality and cost reduction improved from the redistribution of reduction load is analyzed. The results show that the cost saved by the suggested method is KRW 124 billion for scenario-1 and 172 billion for scenario-2 considering total cost of KRW 788 billion for the existing plan. We expect that the suggested method is a good example to reduce water quality management cost in local governments for TMDL.

Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis (유한요소해석을 통한 해중터널의 유체동역학 해석)

  • Kim, Seungjun;Park, Woo-Sun;Won, Deok-Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.955-967
    • /
    • 2016
  • As transportation systems for connecting lands and islands, oversea long-span bridges, underwater tunnels, and immersed tunnels have been mainly used so far. Submerged floating tunnels (SFTs) moored under specific water depth are one of the newest oversea transportation system. Compared to other existing systems, the new system requires relatively less construction cost and time. But, there is still no construction example. For reasonable design of the tunnel and mooring lines the rational structural analysis should be firstly performed. Unlike common transportation structures, the submerged tunnels are mainly affected by the wave, vary irregular excitation component. So, the analysis scheme might be difficult because of the characteristics of the submerged structures. This study aims to suggest the rational global performance analysis methodology for the submerged tunnels. Using ABAQUS the dynamic response of the experimental models studied by KIOST (2013) was investigated considering regular waves. By comparing the simulation results with the experimental results, the feasibility of the numerical simulation was verified. Using the suggested method, the effects of initial inclination of the tethers and draft of the tunnel on the dynamic behavior were studied. In addition, dynamic response of a SFT under the irregular wave was examined.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

A Study on the Improvement of Proper Location for Subway Transit Station Sign Type - Focusing on the Cases of L Type - (지하철 환승역 안내표지 유형별 적정 위치 개선방안 연구 -L자형 지하철역 사례 중심으로-)

  • Kim, Hwang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.915-926
    • /
    • 2017
  • The subway is the transportation means most commonly used by the citizens of the metropolitan area along with the buses in the metropolitan area and major metropolitan municipalities. However, satisfaction with the signboards is low and the signboards need to be improved. In this study, we investigated the problem of guide signs of city hall and exchange area with L - shaped history structure for guide signs affecting route finding. As a result, it is necessary to confirm whether the moving distance is long and moving accurately to the desired destination due to the L - shaped historical structure in both the station and the alternate area. In both stations, the number of the guide signs, Problems such as installation position, height, other. In this study, the movement within the subway station is classified according to the space. The type of guide sign installation was defined, and the specific principles for guiding the movement route were proposed. This research is expected to be useful as an important basic data for the types and layout of subway stations.

Hydraulic Investigation of Pyokkolche Reservoir (벽골제의 수공학적 고찰)

  • Lee, Jang-U
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.397-406
    • /
    • 1998
  • The Pyokkolche Reservoir was constructed as a major public project of the ancient agricultural society, 1600 years ago. From a hydraulic point of view, it is considered to have been carried out with a distinguished technology. It should be in particular noticed that for a consecutive banking the main stream was diverted and drained to the Yonpo stream and the dam with same sea levels on its top along the whole length was built in a nearly straight line in spite of the different sea levels between both ends on the bottom. These suggest that the carrying out artifice and surveying technigue of those days were considerably excellent. However, the insufficient plan and design at the time of the construction, the temporary management and the repeated repair works in the later ages caused the Pyokkolche to lose its function. The Changsaenggeo and Kyungjanggeo gate sites being the facilities for sluices composed of a simple span and a vertical lift hand-operated sing a pully. The advantage of the geographical characteristics at both ends of the main dam was scientifically taken to these sites which also functioned as a spillway against a flood. The gate site of Suyogeo must have been located in an entrance to Suwolri, the northern end of the Pyokkolche and Yutonggeo is presumed to have been located on the right of Sangsori, the southern end of the Pyokklche. Keywords : Pyokkolche Reservoir, construction technology, gate site location.

  • PDF

Suggestion of Delineators Considering Traffic Safety at Curve Sections (교통안전을 고려한 곡선부 시선유도시설물 제시에 관한 연구)

  • Kwon, Sung-Dae;Lee, Suk-Ki;Jeong, Jun-Hwa;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.403-412
    • /
    • 2011
  • On a curve radius, there is speed deviation because a driver who is on the curve radius can have visual distortion. The curve radius can be more dangerous than a straight radius by many reasons. Especially, visibility paralysis of delineator that is because of night and bad weather. Can pervert the information about curve sections, it threatens safety. More over accident risk is increased by influence to travel speed. Therefore, it needs to build and control delineators for driver's visibility. Therefore, this study focus on finding the two types of delineator(the retro-reflection and inside-lighting delineator) by insight-surveying and the operating speed are compared by survey and operating speed. Finally, inside-lighting delineator will be selected in terms of safety at the curve sections. The inside-lighting delineator was more effective than the retro-reflection delineator on visibility, the necessity of reduction of speed and will reduce the hazard at curve sections. Also, the study analyzes safety is guaranteed by the slight reduction of speed when the driver enters a curve radius with inside-lighting delineator. As a result, the inside-lighting delineator can give the information about horizontal and vertical profile effectively, so it can reduce the accident risk. And it can use to improve traffic safety on curve radius.

Problems and Improvement Plans of River-Crossing Structures (하천횡단구조물의 문제점과 개선방안)

  • Kim, Ki Heung;Jung, Hye Ryeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.568-572
    • /
    • 2015
  • 하천횡단구조물은 하천을 횡단하는 시설물로, 크게 농업용수 취수용 보, 하도개수시 유속제어를 위한 낙차공 등을 들 수 있으며, 각각의 설치목적에 따라 그 형태와 설계제원(높이, 마루폭, 바닥보호공의 길이 등)이 다르나, 하천을 횡단하여 인공적인 구조물을 설치하는 형태는 동일하다. 따라서, 하천횡단구조물은 홍수시 배수위 영향으로 상류에 수위상승을 초래하여 하천의 치수 안전도를 저하시킬 뿐 아니라 직하류에서는 하상의 세굴에 의하여 호안 및 제방이 파괴되는 경우도 빈번하게 발생하고 있다. 또한, 하천횡단구조물은 생태계의 이동통로로서의 종적 연속성을 차단하는 것이다. 즉 하천을 따라 거슬러 올라가는 소하성 어종(anadromous species)이나 하천에서 바다로 내려가는 강하성 어종(catadromous species)과 같은 회유성 어종의 이동을 차단하기도 하며, 회유성 어종 이외에도 치어와 성어의 성장환경이 다른 어종의 경우는 상 중 하류를 옮겨가며 성장하는 어종의 이동도 차단하고 있다. 하천횡단구조물은 치 이수적 측면에서 반드시 필요한 하천구조물로서 치수, 생태 및 경관의 측면에서 여러 가지 문제점을 가지고 있으나 지금까지는 어도설치나 기능을 상실한 보의 철거 등 소극적인 수준에 머무르고 있기에 적극적인 개선대책이 필요한 실정이다. 따라서, 하천횡단구조물로 인한 문제점을 파악하기 위하여 경남의 20개 시 군 684개의 지방 하천에 설치된 7,725개의 하천횡단구조물에 대한 전수조사를 실시하고, 구조형식, 높이, 재료, 어도 설치 여부, 세굴현황 등을 분석하였다. 하천횡단구조물의 용도별 구성비는 보가 49%, 낙차공이 51%로 나타났으며, 구조형식은 콘크리트 구조가 72%, 콘크리트 석재 구조가 25%, 석재 구조가 3%인 것으로 분석되었다. 또한, 하천횡단구조물의 본체 높이별 구성비는 0.5m 이하가 14%, 0.5~1.0m가 35%, 1.0~1.5m가 34%, 1.5~2.0m가 10%, 2.0m 이상이 7%인 것으로 조사되었다. 어도 설치는 약 9%인 669개소에 설치되어 있었으나 대부분이 어류 등의 이용하는 생태통로 기능을 발휘할 수 없는 것으로 분석되었다. 따라서, 이러한 문제점을 해결하기 위해서 하폭, 하상고, 하상경사, 굴입정도, 유사량 등의 하도특성 및 용수이용 여건 등을 고려하여 유공관을 이용한 지하보, 석재 아치의 원리를 이용한 계단식 자연형 보/낙차공, 부분 램프 설치, 거석 놓기 등의 개선방안을 제안하였다. 제안된 개선방안은 하천복원 및 하천개수 사업 시행시에 반영하여 합리적인 하천복원 및 관리에 활용될 수 있을 것이다.

  • PDF

Evaluation of hydropower dam water supply capacity (II): estimation of water supply yield range of hydropower dams considering probabilistic inflow (발전용댐 이수능력 평가 연구(II): 확률론적 유입량을 고려한 발전용댐 용수공급능력 범위 산정)

  • Jeong, Gimoon;Kang, Doosun;Kim, Dong Hyun;Lee, Seung Oh;Kim, Taesoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.515-529
    • /
    • 2022
  • Identifying the available water resources amount is an essential process in establishing a sustainable water resources management plan. Dam facility is a major infrastructure storing and supplying water during the dry season, and the water supply yield of the dam varies depending on dam inflow conditions or operation rule. In South Korea, water supply yield of dam is calculated by reservoir simulation based on observed historical dam inflow data. However, the water supply capacity of a dam can be underestimated or overestimated depending on the existence of historical drought events during the simulation period. In this study, probabilistic inflow data was generated and used to estimate the appropriate range of the water supply yield of hydropower dams. That is, a method for estimating the probabilistic dam inflow that fluctuates according to climatic and socio-economic conditions and the range of water supply yield for hydropower dams was presented, and applied to hydropower dams located in the Han river in South Korea. It is expected that the understanding water supply yield of the hydropower dams will become more important to respond to climate change in the future, and this study will contribute to national water resources management planning by providing potential range of water supply yield of hydropower dams.

A Study on the Improvement of 3D Slope Modeling for BIM Designing Site Construction (택지조성공사 BIM을 위한 비탈면 3차원 모델링 효율화 방안에 관한 연구)

  • Kwon, Yongkyu;Ha, Dahyun;Kim, Jeonghwan;Seo, Joonwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2021
  • Recently, interest in Building Information Modeling (BIM) has increased globally, and 3D modeling is a start for the application of BIM at construction sites. However, while many studies have been conducted on the efficiency of 3D modeling focused on civil facilities, there is a lack of research on the earthwork BIM. In particular, since 3D slope often has complex shapes depending on the ground models, the efficiency method for 3D slope are needed. This study analyzed the interfaces and procedures of other software to find out what functions users need. Then the functions to enter intervals between 3D faces, select multiple ground models, and improve the interface are reflected on the developed system and is able to efficiently perform modeling with only five steps, and reduce the number of clicks and inputs. As a result of conducting the test to verify the efficiency, using the developed system made skilled users complete modeling at least 1.8 times faster and unskilled people at least 2.4 times faster than using other software. This is expected to perform 3D slope modeling more efficiently, as well as to contribute to the activation of future BIM adoption for housing construction projects.

Flood Runoff Computation for Mountainous Small Basins using WMS Model (WMS 모형을 활용한 산지 소하천 유역의 유출량 산정)

  • Chang, Hyung Joon;Lee, Jung Young;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.9-15
    • /
    • 2021
  • The frequency of flash floods in mountainous areas is increasing due to the abnormal weather that occurs increasingly in the recent, and it causes human and material damages is increasing. Various plans for disaster mitigation have been established, but artificial plans such as raising embankment and dredging operation are inappropriate for valleys and rivers in national parks that prioritize nature protection. In this study, flood risk assessment was conducted for Gyeryongsan National Park in Korea using the WMS (Watershed Modeling System)which is rainfall runoff model for valleys and rivers in the catchment. As the result, it was simulated that it is flooding in three sub-catchments (Jusukgol, Sutonggol, Dinghaksa) of a total in Gyeryongsan National Park when rainfall over the 50 years return period occurs, and it was confirmed that the risk of trails and facilities what visitors are using was high. The risk of trails in national parks was quantitatively presented through the results of this study, and we intend to present the safe management guidelines of national parks in the future.