• Title/Summary/Keyword: 테일러스

Search Result 18, Processing Time 0.03 seconds

Distribution of the Wetness Index and Field Characteristics of Talus Slopes in the Jungsun Area, Gangwon Province (강원도 정선 지역 테일러스 사면의 습윤지수 및 현장 특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Kim, Sung-Wook;Choi, Eun-Kyeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.391-399
    • /
    • 2010
  • We performed a hydraulic analysis based on the wetness index of talus slopes in Jungsun, Gangwon province. We estimated the relation between the degree of development of the temporary water system, and talus topography and distribution. We also assessed the distribution of talus based on a map of the wetness index. We divided areas of tallus into stable and unstable types, and estimated the size, distribution and shape-preferred orientation of clasts. We performed numerical simulations of rockfall events to assess the optimum location of rockfall barriers upon talus slopes.

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF

Analysis of Talus Slope Stability using 2D FEM and 3D Limit Equilibrium Method (2차원 유한요소법과 3차원 한계평형법을 이용한 테일러스 사면안정성 해석)

  • Lee, Kyoung-Mi;Kim, Sung-Kwon;Seo, Yaung-Seok;Lee, Sun-Bok;Kim, Dong-Hyun;Kim, Do-Sik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.381-391
    • /
    • 2007
  • A series of talus slope stability analyses were carried out using 2D FEM and 3D limit equilibrium methods for this study. The FEM analyses on Phase 2 were performed to delineate failure depths based on stress distributions for each slope. The results revealed that the failure surface exist in the colluvium layer of about 3-10 m thickness. Three dimensional models, derived from the FEM analyses and geological field survey, were made for the use in a 3D limit equilibrium analysis. The result shows that all the talus slopes are stable under dry condition, but unstable under saturated condition due to heavy rain.

A Study on Shoreline Change in Hampyung Bay, Southwestern Coast of korea I. Sea-Cliff Erosion and Retreat (한국 서해 남부 함평만의 해안선 변화 연구 I. 해안절벽의 침식과 후퇴)

  • ;;;;;S-Y YANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • The coastline of Hampyung Bay, southwestern coast of Korea, was examined and measured in the field for the understanding of geomorphic changes and sea-cliff erosion processes. The Hampyung-Bay coastline is characterized by steep-face slope and soft soil and/or intensively weathered rock composition. Saw teeth-shaped coastline, and relict weathered basement-rock and "Island Stack" exposed on the beach surface are peculiar geomorphic features indicating active sea-cliff erosion. The coastline in the study area is continuously retreating with the following cyclic process: erosion of cliff base, gravitational landslide or mass wasting, formation of talus, and then erosion and removal of talus. In this study, sea-level rise during summer in the west coast of Korea is suggested as one of the key factors fur the removal of soil taluses and, thereby, accelerating sea-cliff erosion.f erosion.

Morphology and Genesis of Block Fields on the Seoraksan National Park in Kangwon Province, Korea (설악산국립공원에 발견되는 암괴원에 관한 고찰)

  • Park, Kyeong
    • Journal of the Korean Geographical Society
    • /
    • v.35 no.5
    • /
    • pp.653-663
    • /
    • 2000
  • 본 논문에서는 설악산 아고산대에 나타나는 산정형 암괴원에 관한 여러 가지 논의를 제시하였다. 이 암괴원은 산악인들에게는 너덜지대로 너리 알려져 있었으며, 설악산의 북쪽 황철봉과 귀떼기봉에서 대청에 이르는 서북주릉 상 화강암류의 기반암에 암괴원이 분포하고 있다. 이들 암괴원은 규모가 클 뿐망 아니라 암괴상에는 풍화쇄설물을 가지고 있는 나마(gnamma)와 그루브(groove)를 비롯한 많은 화학적 풍화에 의한 미지형들이 발견되고 있어 한반도의 제 4기 후반의 기후변화와 지형형성 영력을 연구할수 이는 기후지형학적으로 중요한 연구지역이라 하겠다. 본 논문에서는 추후 발표될 암괴원의 성인과 고기후학적 의의에 관한 논의에 앞서 먼저 분포지역에 대한 소개와 몇 가지 이론적 고찰에 관하여 논의를 제한하고자 한다. 국내에서는 테일러스, 암괴류 등에 관한 논의가 상당히 이루어지고 있으나 암괴원에 관한 본격적인 논의는 아직 시작단계에 있다. Landsat 영상에 의한 구조선 분석 결과 구조선 밑도는 설악산 지역에서 큰 차이를 나타내지는 않으며, 암괴원은 대부분 화강암 지역에서 나타나는 것으로 판단된다.

  • PDF

An analysis of Behavior for the Temporary Retaining wall in Colluvium Area (붕적층 지역의 가시설 거동분석)

  • chung, dae seouk;Kim, Seon Woo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.343-344
    • /
    • 2017
  • 우리나라는 산악지형 특성상 붕적층이 발달한 지역이 많아 도로나 건축물이 계획될 경우 일반적으로 이러한 지역을 배제하는 계획을 수립하게 된다. 그러나 현장 여건상 불가피하게 붕적층 구간을 포함한 건설 계획이 수립될 경우 지반 굴착, 사면 절취로 인해 지반 거동특성이 불안정할 수 있으므로 상세한 사전 조사와 적절한 토공 및 굴착 계획과 시공 중 Feed Back 등이 면밀히 이루어져야 한다. 붕적층 지반은 소량의 토사에 자갈, 호박돌, 전석 등이 혼재되어 있는 상태로 주로 테일러스에 의해 생성되며, 암괴의 함량이 매우 높으며 소량의 풍화된 잔류토사가 혼재된 양상을 보인다. 본 연구에서는 붕적층이 깊게 분포하는 지역, 특히 배면에 지장물(상수도관 등)문제로 인해 발생한 가시설 붕괴지역을 사례로 역해석을 통한 붕적층의 지반정수 재평가를 실시하였다.

  • PDF

Facies Analysis of the Early Mesozoic Hajo Formation in the Chungnam Basin, Boryeong, Korea (보령지역 충남 분지 중생대 초기 하조층의 퇴적상 분석)

  • Lee, Sin-Woo;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.18-35
    • /
    • 2010
  • Facies analysis of the Late Triassic Hajo Formation, the lowest stratigraphic unit in the Chungnam Basin, shows that the lower part is composed mainly of breccias or conglomerates; the middle part, conglomerates; and the upper part, conglomerates and sandstones. The formation consists of 13 facies, which include horizontally stratified clastsupported conglomerate, clast-supported massive breccia, matrix-supported massive breccia or conglomerate, matrixsupported graded conglomerate, massive pebbly sandstone, horizontally laminated sandstone, massive sandstone, graded sandstone, inversely graded sandstone, planar cross-bedded sandstone, trough cross-bedded sandstone, low angle crossbedded sandstone, and massive mudstone. These are grouped into 4 facies associations (FA). FA I consisted of clastsupported and matrix-supported massive breccias presumably deposited in the talus or upper fan delta environment. FA II consists of matrix-supported massive conglomerate and horizontally stratified clast-supported conglomerate of cobble size and it seems to have been deposited in the upper fan delta environment. FAIII consisted of matrix-supported massive conglomerate of pebble size, horizontally laminated sandstone and massive sandstone may have been deposited in the middle fan delta environment. FAIV consists of massive pebbly sandstone, horizontally laminated sandstone and massive sandstone and presumably was deposited in the lower fan delta environment. In general the Hajo Formation is interpreted to have been deposited at the talus/upper fan delta environment in early stage; it might have been deposited in the alternating environments of upper and middle fan delta in middle stage; and it seems to have been deposited in alternating environments of middle and lower fan delta in late stage.

A study on Orientation and Morphology of clasts in Rockfall Talus in the Sukam area, Bukpyoung-eup, Gangwon-do, South Korea (테일러스 역의 방향성 및 형태 분포에 대한 연구 - 강원도 정선군 북평읍 숙암리 지내 사면을 중심으로 -)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Baek, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.469-474
    • /
    • 2003
  • Talus topography is that rock clasts that is weathered is accumulated dropping in steep slope to action of gravity. Rock fall talus is formed by the accumulation of rock debris falling as individual particles from a cliff. If the collapse is produced in talus slope, it will be possible the loss of manpower and country. Despite correct access about talus is required, domestic research was scientific access about talus short. The aim of the present study is to review and compare fabric data derived from rock fall talus about orientation, distribution and morphology in Sukam area. These deposits tend to have approximately equal amounts of clasts oriented parallel and perpendicular to the dip direction of the slope. And, platy-shaped clasts dominate the proximal and intermediate parts of the talus, whereas blocky-shaped clasts is more common in the distal part.

  • PDF