• Title/Summary/Keyword: 테이프캐스팅

Search Result 33, Processing Time 0.074 seconds

In-Bi-Sn Alloy Sheet for Thermal Fuse Element of Secondary Battery Safety System (이차전지온도퓨즈용 In-Bi-Sn계 가용합금박판 연구)

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.22-28
    • /
    • 2017
  • In-Bi-Sn alloy sheet has been used as a thermal fusible parts of secondary battery safety system. This study offers a simple process to make In-Bi-Sn alloy fusible parts. The process consists of two procedures, melting and sheeting by tape casting. 62.5 wt%-In 20.0 wt%-Bi 17.5 wt%-Sn (M.P. $92.4^{\circ}C$) alloy sheet obtained by tape casting was used as the thermal fusible sheet of thermal fuse system for mobile telephone. The performance test of the system was carried out in oil bath, and the fusible alloy sheet was melted and cut off at $95^{\circ}C$. This results confirmed the possibility that the alloy sheet obtained by tape casting can be usable as a thermal fusible parts of battery safety system. And this process can be applied as a simple process to recycle the In-Bi-Sn alloy scrap separated from the used thermal fuse system.

Dispersion and Rheological Characteristics of Alumina Slurries in Aqueous Tape-casting Using Acrylate Binder (Acrylate를 결합제로 사용한 수계 테이프 캐스팅에서 알루미나 슬러리의 분산 및 점성 특성)

  • Cho, Yu-Jeong;Park, Il-Seok;Moon, Joo-Ho;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Measurements of sedimentation, solid loading, zeta potential, and viscosity were employed to determine a proper dispersant and its amount for a well dispersed alumina powders in aqueous alumina tape casting using acrylate as a binder. Polycarboxylic acid was the most effective one among various dispersants considered in the present study and its amount was 0.23∼0.24 g per 100 g alumina for a dispersion. Better dispersion was obtained as an increase of dispersant addition. However, the dispersion was hindered as the amount of dispersant was higher than the optimum amount because of bridging or tangling of polymer chains. Excellent aqueous alumina tapes were prepared from the slurry containing the optimum amount of the polycarboxylic acid (0.2g), alumina powders(100 g), acrylate and Benzoflex as binder and plasticizer, respectively. The viscosity of the slurry was 570 cps and the alumina loading in the tape was 57 vol%.

Slurry Rheology in LTCC Tape Casting (LTCC Tape casting에서 슬러리의 Rheology)

  • Park, Zee-Hoon;Shin, Hyo-Soon;Yeo, Dong-Hun;Park, Byung-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.43-43
    • /
    • 2007
  • LTCC는 최근의 이동 통신 환경의 급격한 발전 속에 그 응용 및 특성 요구가 증폭되고 있다. 이러한 LTCC 소재는 주로 테이프 캐스팅에 의한 후막 공정으로 제품이 만들어지게 되는데, 캐스팅을 위해 제조되는 슬러리는 일반적으로 유변학적 의사가소성 거동을 하는 것으로 알려져 있다. 그러나, 슬러리 제조 조건에 따라 유변학적 거동이 다르게 나타나는 것이 관찰되었다. 이에, 슬러리 제조 조건을 다양하게 변화시키며, 유변학적 거동을 살며 보고 이렇게 변화된 유변학적 거동과 캐스팅된 시트 특성과의 관계를 검토해 보려 한다. LTCC 재료의 주 구성 요소인 glass와 세라믹 분말의 초기 조건 및 각각의 rheology 특성과 혼합 슬러리에서의 관계성 등을 고찰하려 한다.

  • PDF

Study on the Composition of Organic Additives for Thickness Control of Ceramic Green Sheets (세라믹 그린 쉬트의 두께제어를 위한 유기물 첨가제 조성에 관한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Park, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.184-184
    • /
    • 2008
  • 저온 동시 소성 세라믹(LTCC, Low Temperature Co-firing) 기술 중에서 테이프 캐스팅(tape casting)은 얇고 균일한 세라믹 그린 쉬트를 연속 성형할 수 있으며 성형된 쉬트의 밀도, 표면상태, 두께제어 등이 매우 중요하다. 얇고 균일한 세라믹 그린 쉬트를 제작하기 위해서 슬러리의 분산성과 레오로지 특성은 매우 중요한 요소이며 첨가되는 유기물 첨가제들의 종류와 함량비는 슬러리의 분산성과 점도에 큰 영향을 미친다. 본 연구에서는 유기물 첨가제의 종류와 함량에 따른 슬러리의 점도와 그린 쉬트의 밀도 및 두께 제어에 미치는 영향을 고찰하였다. 바인더로는 acryl, polyvinyl 계를 사용하였으며, 가소제는 glycol, phatalate 계를 사용하였다. 각각 2 종류의 바인더와 가소제의 함량에 따른 레올로지 거동과 그런 쉬트의 밀도를 측정하였다. 각 조성별로 준비된 슬러리를 사용하여 테이프 캐스팅 방법으로 제작된 그린 쉬트의 두께를 측정하여 유기물 첨가제 조성이 그린 쉬트의 두께제어에 미치는 영향을 평가하였다.

  • PDF

Effect of $BaTiO_3$ Dispersion on the Properties of Cast Tapes in Processing of Multilayer Ceramic Capacitor(MLCC) (적층 세라믹콘덴서 제조공정에서 $BaTiO_3$의 분산이 테이프캐스팅 성형체의 물성에 미치는 영향)

  • 김봉호;김병관;김명호;백운규
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.214-222
    • /
    • 1996
  • The effect of physicochemical properties of organic solvent and dispersant among organic solvent dispersant binder and plasticizer which are used as processing additives in MLCC fabrication process on the dispersion of BaTiO3 was studied. The steric and electrostatic stabilization mechanisms in dispersion of BaTiO3 in organic media were evaluated respectively. The sttability of BaTiO3 achieved bysteric stabilization was dependent on the fraction of surface coverage of dispersant adsorption on BaTiO3. The electrostatic repulsive forces of BaTiO3 particles dispersed in orgainc media was found to be appreciabley great and dependent mainly on the kinds of organic solvent used. The mechanism affecting the stability of BaTiO3 was studied by the method of rheologi-cal behaviors of BaTiO3 suspension.

  • PDF

Doctor Blade Tape Casting of In-based Low Melting Point Alloy (In 계 저융점합금의 닥터 블레이드 테이프캐스팅)

  • Youn, Ki-Byoung
    • Journal of Korea Foundry Society
    • /
    • v.35 no.3
    • /
    • pp.62-66
    • /
    • 2015
  • Tape casting is an important forming operation used to prepare flat sheets in the various industries. In this study, Doctor Blade tape casting of In-based low melting point alloy was carried out. The purpose of this investigation was to determine the possibility of applying the Doctor Blade tape casting process to the manufacture of low melting point alloy sheets that can be used as thermal fusible parts of battery safety systems. In-based molten alloy that has a melting point of $95^{\circ}C$ was produced; it's viscosity was measured at various temperatures. The molten alloy was used as a slip in the caster of the Doctor Blade tape casting system. The effects of the molten alloy temperatures and carrier speeds on the produced sheet shape were observed. For the casting conditions of 1.5 cm slip height, $120^{\circ}C$ slip temperature, 0.05 mm blade gap and 60 m/min. carrier speed, an In-based alloy thin tape well shaped with 0.16 mm uniform thickness was continuously produced.

Cracks in Tape Cast Oxide Laminar Composites (테이프 캐스팅 산화물 층상 복합체에서의 균열)

  • Kim, Ji-Hyun;Yang, Tae-Young;Lee, Yoon-Bok;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.484-489
    • /
    • 2002
  • Hot-pressure sintered laminar composites with alumina/zirconia or mullite/zirconia as an outer layer and alumina/zircon (resulting in reaction-bonded mullite/zirconia during sintering) as an inner layer were fabricated by tape casting and lamination. Various forms of crack were observed in sintered laminar composites, these cracks included channel cracks in the outer layer, transverse cracks in the inner layer and interface cracks debonding interlayer. Based on detailed microscopic observations, the cracks were attributed to thermal expansion mismatch between the oxides consisting of the each layer. In particular, the interlayer and transverse cracks were confirmed in the laminates consisted of the mullite/zirconia system as the outer layers, however, those cracks were not observed in the alumina/zirconia system used. In addition, the crack propagation did not exhibit same behavior in the two kinds of outer layer when the indentation load was applied.

Sheet fabrication of Ni-WC anode for Molten Carbonate Fuel Cell by Tape Casting Method (테이프 캐스팅법에 의한 MCFC Anode용 Ni-WC 박판 제조)

  • Choe, Jin-Yeong;Jeong, Seong-Hoe;Jang, Geon-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.715-720
    • /
    • 2000
  • By the mechanical alloying method. Ni-WC composite materials were prepared to improve the deformation-resistance for creep and sintering of Ni-anode at the operating temperature of $650^{\circ}C$. Mechanically alloyed powder w was initially fabricated by ball milling for 80hr, and then amorphization was occurred by the destruction of ordered crystals based on XRD analysis. In order to investigate the electrochemical performance and sheet characteristics of Ni-WC anode, tape casting process was adopted. Finally, the obtained sheet thickness of Ni- we after sintering at $1180^{\circ}C$ for 60 minutes in $H_2$ atmosphere was O.9mm and the average pore size was $3~5{\mu\textrm{m}}$ with porosities of 55%. The second phase was not observed in Ni- W matrix while W particles were finely and uniformly distributed in Ni matrix. This fine and uniform distributed W particles in Ni matrix are expected to enhance the mechanical properties of Ni anode through the dispersion and solid solution hardening mechanisms.

  • PDF