DOI QR코드

DOI QR Code

In-Bi-Sn Alloy Sheet for Thermal Fuse Element of Secondary Battery Safety System

이차전지온도퓨즈용 In-Bi-Sn계 가용합금박판 연구

  • 윤기병 (인천대학교 나노바이오공학과)
  • Received : 2017.05.31
  • Accepted : 2017.09.14
  • Published : 2017.10.31

Abstract

In-Bi-Sn alloy sheet has been used as a thermal fusible parts of secondary battery safety system. This study offers a simple process to make In-Bi-Sn alloy fusible parts. The process consists of two procedures, melting and sheeting by tape casting. 62.5 wt%-In 20.0 wt%-Bi 17.5 wt%-Sn (M.P. $92.4^{\circ}C$) alloy sheet obtained by tape casting was used as the thermal fusible sheet of thermal fuse system for mobile telephone. The performance test of the system was carried out in oil bath, and the fusible alloy sheet was melted and cut off at $95^{\circ}C$. This results confirmed the possibility that the alloy sheet obtained by tape casting can be usable as a thermal fusible parts of battery safety system. And this process can be applied as a simple process to recycle the In-Bi-Sn alloy scrap separated from the used thermal fuse system.

이차전지온도퓨즈시스템에 In-Bi-Sn계 저온가용합금 박판이 사용되고 있다. 본 연구에서는 온도퓨즈시스템에 사용될 수 있는 적절한 조성을 갖는 In-Bi-Sn계 합금을 용융하고 테이프캐스팅공정에 의하여 박판으로 제조하여 온도퓨즈용 저온가용합금 박판소재로 활용하는 가능성을 조사하였다. In-Bi-Sn계 용융합금은 기존의 박판제조공정보다 단순하고 생산성이 향상된 테이프캐스팅공정을 사용하여 박판화가 가능하다. 테이프캐스팅공정을 사용하여 얻은 62.5 wt%-In 20.0 wt%-Bi 17.5 wt%-Sn(융점 $92.4^{\circ}C$) 합금박판으로 휴대폰용 온도퓨즈시스템을 구성하여 $95^{\circ}C$에서 용락되는 기능이 나타남을 확인하였다. 이러한 공정은 폐In-Bi-Sn계 합금스크랩 처리에도 적용하여 합금조성과 박판두께를 적절히 조정하면 온도퓨즈시스템 가용합금 박판소재로 재활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Matsushita, 2003 : Element for thermal fuse, thermal fuse and battery including the same, Patent US 20050083166.
  2. Uchihashi Estec, 2003 : Alloy type thermal fuse and fuse element, Patent US 7038569.
  3. Kenneth N. Han, 2001 : Recovery of Indium from Scrap, J. of Korean Inst. of Resources Recycling, 10(5), pp.3-7.
  4. Gi-Wung Shin et al., 2015 : Recovery of Tin from Waste Tin Plating Solution by Ion Exchange Resin, J. of Korean Inst. of Resources Recycling, 24(3), pp.51-58. https://doi.org/10.7844/kirr.2015.24.3.51
  5. Yuhu Li et al., 2011 : Recovery of Indium from Used Indium-Tin Oxide (ITO) Targets, Hydrometallurgy, 105, pp.207-212. https://doi.org/10.1016/j.hydromet.2010.09.006
  6. Hui-Ming Liu et al., 2009 : Recovery of Indium from Etching Wastewater Using Supercritical Carbon Dioxide Extaction, J. of Hazardous Materials, 172, pp.744-748. https://doi.org/10.1016/j.jhazmat.2009.07.098
  7. Kye-Sung Park et al., 2009 : Recovery of Indium from $In_2O_3$ and Liquid Crystal Display Powder via a Chloride Volatilization Process Using Polyvinyl Chloride, Thermochimica Acta, 493, pp.105-108. https://doi.org/10.1016/j.tca.2009.03.003
  8. Richard E. Mistler and E. R. Twiname, 2000 : Tape Casting Theory and Practice, American Ceramic Society, Wester Ville, OH, pp.127-158.
  9. Youn, K. B. 2015 : Doctor Blade Tape Casting of In-based Low Melting Point Alloy, J. of Korea Foundry Society, 35(3), pp.62-66. https://doi.org/10.7777/jkfs.2015.35.3.062