• 제목/요약/키워드: 터빈 냉각

검색결과 190건 처리시간 0.031초

비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition)

  • 이동호;강승구;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

축냉시스템의 산업용 생산설비 적용에 대한 고찰 (Study on TES system application for industrial production facility)

  • 박창현;홍승수;김종률;박승상;황형식
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1288-1293
    • /
    • 2009
  • The TES (Thermal Energy Storage) cooling system utilizing cheaper off-peak electricity has been applied just for building air-conditioning currently and causes limitation of usage rate and inefficiency of national resources utilization. In this regard, more says the necessity to apply TES system in industrial cooling system which is longer using period and wider usage. In this study, we will approve the technical and economical improvement in efficiency of industrial cooling system applied TES system by utilizing cheaper off-peak electricity and it will attribute the promotion of TES system and stabilization of supply and demand of electric power by proving the necessity to develop more efficient industrial cooling system by combining TES system.

  • PDF

정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (I) - 분사비 및 레이놀즈 수 효과 - (Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (I) - Effects of Blowing Ratio and Reynolds Number -)

  • 강승구;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.927-936
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a film cooling hole of square cross-section for various blowing ratios and Reynolds numbers. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing ratios decrease because the main flow induces a secondary vortex. Heat/mass transfer patterns within the square film cooling hole are changed little with the various Reynolds numbers.

정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (II) - 비대칭 입구조건 효과 - (Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (II) - Effects of Asymmetric Inlet Flow Condition -)

  • 이동호;강승구;조형희
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.937-944
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet now condition. The asymmetric inlet now condition is achieved by making distances between side walls of the secondary now duct and the film cooling hole different; one side wall is $2D_h$ apart from the center of the film cooling hole, while the other side wall is $1.5D_h$ apart from the center of the film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the now field has been analyzed by numerical calculation using a commercial code. Swirl now is generated at the inlet region and the heat/mass transfer pattem with the asymmetric inlet now condition is changed significantly from that with the symmetric condition. In the exit region, the effect of mainstream on the inside hole now is reduced with the asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl now generated by the asymmetric inlet condition.

폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실 (Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction)

  • 이상우;김용범
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상 (Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect)

  • 김기문;김예지;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.5-10
    • /
    • 2017
  • In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with $30^{\circ}$ and $45^{\circ}$ angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of $30^{\circ}$ angled slot was higher than that of $45^{\circ}$ angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the $30^{\circ}$ angled slot. On the other hand, for the $45^{\circ}$ angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측 (3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor)

  • 이재복;정대로;허강열;진재민;박정규;이민철
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1257-1264
    • /
    • 2011
  • 희박예혼합 가스터빈 연소기에 대한 3 차원 RANS 해석을 수행하였으며 PCFM(Partially Premixed Coherent Flame Model) 화염면적밀도 생성항 상수의 보정을 통하여 희박연소조건을 모사하였다. PCFM 에서 계산된 화염면적밀도에 의해 층류 예혼합 화염의 전파를 예측하고 불균일하게 분포한 기연 가스의 물성을 평형 가정에 따라 예측하였다. 복사와 대류 열전달을 모사하기 위해 냉각 조건으로서 실험과의 비교를 통해 결정된 열유속을 적용하였다. 이러한 3 차원 해석 결과를 바탕으로 파일럿 노즐과 메인 노즐에 분배되는 연료량 비에 대한 민감도 조사를 수행하였으며 CRN(Chemical Reactor Network)을 구성하여 NOx 배출량을 예측하고 측정값과 비교 분석하였다.

비행체 추진기관용 내열 복합재의 특성 및 개발 동향 (Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System)

  • 황기영;박종규
    • 한국항공우주학회지
    • /
    • 제47권9호
    • /
    • pp.629-641
    • /
    • 2019
  • 고온, 고압의 연소가스에 의해 유입되는 많은 열을 효과적으로 차단하여 고체 로켓 노즐의 공력형상을 최대한 유지하면서 구조물의 온도 상승을 일정수준 이하로 제한하기 위해 연소가스와 접하는 위치에 내삭마성이 우수한 C/C 복합재 등의 내열재를, 그 배면에는 열확산계수가 낮은 단열재를 적용한다. 내산화성이 우수한 SiC/SiC 복합재는 가스터빈 엔진에 적용되고 있으며, 경량화와 내열성 향상으로 인해 엔진 성능 증가에 기여하고 있다. 극초음속으로 비행하는 스크램제트는 흡입 공기 온도가 매우 높아서 흡열 연료를 냉각제로 사용하는 C/SiC 구조물 개발 연구가 수행되고 있다. 본 논문에서는 고체 로켓 노즐, 가스터빈 엔진 및 램제트/스크램제트 추진기관에 사용되는 다양한 내열 복합재의 특성, 적용사례 및 개발 동향을 고찰하였다.

연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구 (Experimental study to enhance cooling effects on total-coverage combustor wall)

  • 조형희
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions)

  • 함진기;조형희
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.