• Title/Summary/Keyword: 터보축엔진

Search Result 77, Processing Time 0.024 seconds

Improvement on Performance Simulation Using Component Maps of Aircraft Gas Turbine Obtained from System Identification (시스템 식별로 구한 구성품 성능선도를 이용한 개선된 가스터빈 성능해석 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.96-103
    • /
    • 2004
  • Sought a set of component performance lines from experiment data or some data supplied in the engine manufacturer to improve the traditional scaling method and suggested a map scaling method that construct component performance lines newly using polynomial equations of MATLAB program. In this study, applied technique that is proposed newly to PT6A-62 that verified technique that is proposed newly using experiment data of small. size turboshaft engine, and is actuality aircraft engine. In identification of the component maps of the turboprop engine, the simulated performance using the proposed scaling method was compared with the real engine performance data and the performance using the traditional scaling method.

Thrust Estimation Acting on Rotor of LOX Pump for Liquid Rocket Engine (액체로켓엔진용 산화제펌프 회전체의 하중 예측)

  • Kim, Dae-Jin;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.98-104
    • /
    • 2015
  • Excessive thrust acting on the rotor of pump can cause the damage of pump or the decrease of pump lifetime. Therefore, for ensuring the safety of LOX pump of a liquid rocket engine, the thrust of pump rotor is estimated by similarity tests. Axial thrust is indirectly measured by an axial thrust measurement unit positioned outside pump. Radial thrust is calculated based on pressure distribution of volute scroll. As a result, axial and radial thrust are increased when the flowrate of pump decreases. However, both thrusts do not affect the stability of pump rotor since their values are not large.

Rotordynamic design of a fuel pump and turbine for a 75 ton liquid rocket engine (75톤급 액체로켓 엔진용 연료펌프/터빈 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.201-208
    • /
    • 2007
  • A fuel pump and turbine rotordynamic design is performed for a 75 ton thrust liquid rocket engine. A distance from the rear bearing to the turbine was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds, turbine mass and bearing stiffness to investigate critical speed of the fuel pump and turbine. From the numerical analysis, it is found that the effect of the front bearing stiffness is negligible in the critical speed due to the large mass moment of inertia of the turbine. With the rear bearing stiffness over $2{\times}10^{8}N/m$ and the turbine mass below 20 kg, the critical speed of the fuel pump and turbine in long shaft case is at least 70 % higher than the operating speed 11,000 rpm.

  • PDF

Defect Diagnostics of Gas Turbine with Altitude Variation Using Hybrid SVM-Artificial Neural Network (SVM-인공신경망 알고리즘을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee, Sang-Myeong;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In this study, Hybrid Separate Learning Algorithm(SLA) consisting of Support Vector Machine(SVM) and Artificial Neural Network(ANN) has been used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine in the off-design range considering altitude variation. Although the number of teaming data and test data highly increases more than 6 times compared with those required for the design condition, the proposed defect diagnostics of gas turbine engine using SLA was verified to give the high defect classification accuracy in the off-design range considering altitude variation.

로켓엔진용 연료펌프 전산유동해석

  • Noh, Jun-Gu;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.183-190
    • /
    • 2004
  • The performance analysis of a fuel pump for a liquid rocket engine has been performed numerically on its design condition. A commercial three-dimensional Navier-Stokes flow solver has been used for the computation. All of the fuel pump components - inducer, impeller, volute and secondary flow passages - are included in computation for the accurate estimation of the leakage flow rate which affects the performance and axial thrust. A pitchwise-averaged mixing plane method was used on the boundaries among the fuel pump components to save computational time. The predicted overall performance satisfied the design requirement. However, the axial thrust exceeded a permissible limit. In order to reduce the axial thrust, the secondary flow passage design has been changed. With this change, the axial thrust level has been reduced to 30% as compared with the original value.

  • PDF

A Study on Optimal Parameter Selection for Health Monitoring of Turboprop Engine (PT6A-62) (터보프롭엔진(PT6A-62)의 성능저하 진단을 위한 최적 계측 변수 선정에 관한 연구)

  • 공창덕;기자영;장현수;오성환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-97
    • /
    • 2000
  • A steady state performance simulation and diagnostics program for the turboprop engine (PT6A-62), which is the power plant of the first developed military basic trainer KT-1 in Republic of Korea, was developed. The developed steady state performance analysis program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters were discussed to evaluate validity of the developed program at various cases such as altitude, flight velocity and part load variation. GPA(Gas Pass Analysis) allows engine performance deterioration to be identified at the module level in terms of reduction in component efficiencies and changes in mass flow. In order to find optimal instrument set to detect the physical faults such as fouling, erosion and corrosion, a gas path analysis approach is utilized. This study was performed in two cases for selection of optimal measurement parameters. One case was considered with the effect of instrument number by changing independent parameter number. The other case was performed with selection of independent parameter set. According to the analysis results, the optimal measurement parameters selected were eight dependent variables such as shaft horsepower, fuel flow rate, compressor exit pressure and temperature, compressor turbine inlet pressure and temperature and power turbine inlet pressure and temperature.

  • PDF

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

A study on the control law of Automatic Rudder Trim System for turbo prop aircraft (터보 프롭 항공기 자동러더트림장치 제어법칙에 관한 연구)

  • 박완기;이광현;김병수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.121-131
    • /
    • 1999
  • Automatic Rudder Trim System(ARTS) is a device to reduce the pilot's work load for rudder trimming greatly required in varying abruptly aircraft's engine power. This paper represents a technical analysis and a design of control law of the ARTS. The control law of the ARTS is designed based on the analysis of aircraft's characteristics, system's requirements, and limitations. The control law is comprised of open loop control using the rudder trim map for a specific aircraft and closed loop control to compensate the error of the open loop control system. flight test results show that the ARTS can reduce pilot's work load for rudder trimming dramatically and can compensate the aircraft's transient yaw motion.

  • PDF

Experimental Research on the Performance of Air Turbine Starter for Gas Turbine Engines (가스터빈 엔진용 공기터빈 시동기 성능에 관한 실험적 연구)

  • Kim, Chun-Taek;Yang, In-Young;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2012
  • Gas turbines for an aircraft have the start and restart capabilities within their flight envelop. It is an important item for engine qualification and substantiated with the test. Experimental investigations were carried out to find the relation between the corrected torque and the corrected rotating speed of an air turbine starter in this study. A dedicated air supply system for the air turbine starter and a special device to measure the torque and the rotating speed of the air turbine starter were developed and installed at the altitude engine test facility in Korea Aerospace Research Institute. Experimental results show that the relations between the corrected torque and the corrected rotating speed of the air turbine starter are linear and the inlet temperature and pressure conditions for the air turbine starter were found out to provide minimum required torque for the engine qualification test at various altitude. The start and restart tests for the currently developing engine were successfully performed using this experimental results.