• Title/Summary/Keyword: 터보등화 기법

Search Result 29, Processing Time 0.022 seconds

Experiment performance analysis of turbo code based turbo equalizer (터보 부호 기반의 터보 등화기 실험 성능 분석)

  • Park, Gun-woong;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1525-1530
    • /
    • 2015
  • In this paper, We analyzed the performance of turbo equalizer using turbo codes thorough the under water experiment. To compensate the distorted signal induced by multipath effect, we apply the iterative turbo codes that iteratively exchange probabilistic information between LMS-DFE and turbo decoder, thereby reducing the error rates significantly. We showed the successful of turbo decoding of iterative turbo equalizer is 93%.

A study on efficient integration model of satellite and underwater communication for improving throughput efficiency (전송효율 향상을 위한 위성 및 수중 통신의 효율적인 융합 모델 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.535-541
    • /
    • 2016
  • In this paper, we analyzed efficient decoding scheme with FTN(Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. Applying the FTN method to satellite and underwater communication, we proposed an efficient transceiver model. To minimize ISI(Inter-Symbol Interference) induced by FTN signal, turbo equalization algorithms that iteratively exchange probabilistic information between Viterbi equalizer based on BCJR algorithm and LDPC decoder are used in satellite communication. In others, for underwater communication, DFE equalizer and LDPC decoder are concatenated to improve performance.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

Performance Analysis of DVB-T2 Turbo Equalization with LDPC and MAP Detector (LDPC 복호와 MAP 등화기를 결합한 DVB-T2 터보 등화기법의 성능분석)

  • Tai, Qing Song;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.665-671
    • /
    • 2010
  • In this paper, a turbo equalizer is proposed for the digital video broadcasting for terrestrial - 2nd generation (DVB-T2) system. The proposed turbo equalizer is consisted with the maximum a posteriori (MAP) and low density parity check (LDPC) decoder. The channel information for the soft-input-soft-output (SISO) MAP equalizer is based on the least square (LS) channel estimator. The performance is analyzed through computer simulations in terms of the iteration number.

Performance Analysis of Turbo Equalizer in the Multipath Channel (다중 채널 환경에서 터보 등화기 성능 분석)

  • Jung, Ji Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.169-173
    • /
    • 2012
  • This paper investigates the performance of Turbo equalization in wireless multipath channels. Turbo equalization mainly consists of a SISO(soft-in soft-out) equalizer and a SISO decoder. Iterative channel estimators can improve the accuracy of channel estimates by soft information fed back from the SISO decoder. Comparing iterative channel estimators with LMS(least mean square) and RLS(recursive least squares) algorithms, which are the most common algorithms to estimate and track a time-varying channel impulse response, the iterative channel estimator with RLS converges more faster than the one with LMS. However, the difference of BER(bit error rate) performances gradually decreases as the number of iterations for Turbo equalization increases.

Performance of the Recursive Systematic Convolutional Code with Turbo-Equalization Method for PMR Channel (수직자기기록 채널에서 터보등화기 구조를 이용한 순환 구조적 길쌈 부호의 성능)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.15-20
    • /
    • 2009
  • For perpendicular magnetic recording (PMR) channels, noise-predictive maximum likelihood (NPML) detection method has been used. But, it is hard to expect improving the performance when the bit density is increased. Hence, we exploit the coding methods which has good performance. In this paper, we show the performance of the recursive systematic convolutional (RSC) codes with turbo-equalization method with different channel bit densities. The noise model is 80% jitter noise and 20% AWGN.

A Study of Efficient Viterbi Equalizer in FTN Channel (FTN 채널에서의 효율적인 비터비 등화기 연구)

  • Kim, Tae-Hun;Lee, In-Ki;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1323-1329
    • /
    • 2014
  • In this paper, we analyzed efficient decoding scheme with FTN (Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. we proposed viterbi equalizer model to minimize ISI (Inter-Symbol Interference) when FTN signal is transmitted. the proposed model utilized interference as branch information. In this paper, to decode FTN singal, we used turbo equalization algorithms that iteratively exchange probabilistic information between soft Viterbi equalizer (BCJR method) and LDPC decoder. By changing the trellis diagram in order to maximize Euclidean distance, we confirmed that performance was improved compared to conventional methods as increasing throughput of FTN signal.

Performance Analysis of Underwater Acoustic Communication Systems with Turbo Equalization in Korean Littoral Sea (한국 연근해 환경에서 터보 등화기를 이용한 수중음향통신 시스템 성능 분석)

  • Park, Tae-Doo;Han, Jeong-Woo;Jung, Ji-Won;Kim, Ki-Man;Lee, Sang-Kook;Chun, Seung-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The performance of underwater acoustic communication system is sensitive to the ISI(Inter-Symbol Interference) due to delay spread develop of multipath signal propagation. The equalizer is used to combat the ISI. In this paper, the performances of underwater acoustic communication with turbo equalizer were evaluated by real data collected in Korean littoral sea. As a result, when one iterative decoding using turbo equalizer is applied, the performance was improved 1.5 dB than the case of the non-iterative equalizer at BER $10^{-4}$. In the case of two or three iterations the performance was enhanced about 3.5 dB, but the performance wasn't improved any more in the case of more than three times.

Turbo Equalization for Covert communication in Underwater Channel (터보등화를 이용한 직접대역확산통신 기반의 은밀 수중통신 성능분석)

  • Ahn, Tae-Seok;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1422-1430
    • /
    • 2016
  • Researches for oceans are limited to military purpose such as underwater sound detection and tracking system. Underwater acoustic communications with low-probability-of-interception (LPI) covert characteristics were received much attention recently. Covert communications are conducted at a low received signal-to-noise ratio to prevent interception or detection by an eavesdropper. This paper proposed optimal covert communication model based on direct sequence spread spectrum for underwater environments. Spread spectrum signals may be used for data transmission on underwater acoustic channels to achieve reliable transmission by suppressing the detrimental effect of interference and self-interference due to jamming and multipath propagation. The characteristics of the underwater acoustic channel present special problems in the design of covert communication systems. To improve performance and probability of interception, we applied BCJR(Bahl, Cocke, Jelinek, Raviv) decoding method and the direct sequence spread spectrum technology in low SNR. Also, we compared the performance between conventional model and proposed model based on turbo equalization by simulation and lake experiment.

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF