• Title/Summary/Keyword: 터널 안정성 평가

Search Result 424, Processing Time 0.025 seconds

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF

The Inflence of Excavation Damaged Zone around an Underground Research Tunnel in KAERI (한국원자력연구원 내 지하처분연구시설 주변의 암반 손상대 영향 평가)

  • Kwon, S.;Kim, J.S.;Cho, W.J.
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2008
  • The development of an excavation damaged zone, EDZ, due to the blasting impact and stress redistribution after excavation, can influence on the long tenn stability, economy, and safety of the underground excavation. In this study, the size and characteristics of an EDZ around an underground research tunnel, which was excavated by controlled blasting, in KAERI were investigated. The results were implemented into the modelling for evaluating the influence of an EDZ on hydro-mechanical behavior of the tunnel. From in situ tests at KURT, it was possible to determine that the size of EDZ was about l.5rn. Goodman jack tests and laboratory tests showed that the rock properties in the EDZ were changed about 50% compared to the rock properties before blasting. The size and property change in the EDZ were implemented to a hydro-mechanical coupling analysis. In the modeling, rock strengths and elastic modulus were assumed to be decreased 50% and. the hydraulic conductivity was increased 1 order. From the analysis, it was possible to see that the displacement was increased while the stress was decreased because of an EDZ. When an EDZ was considered in the model, the tunnel inflow was increased about 20% compared to the case without an EDZ.

A study on the effect of ground conditions of room and pillar method on pillar and room strain (격자형 지하공간의 지반조건이 암주와 룸 변형률에 미치는 영향에 대한 연구)

  • Ham, Hyeon Su;Kim, Yong Kyu;Park, Chi Myeon;Lee, Chul Ho;Kim, YoungSeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.577-587
    • /
    • 2021
  • Room and Pillar method is an underground facility construction method that maximizes the strength of the in-situ ground. In order to secure the safety of the underground space, it is necessary to secure the safety of the room actually used in addition to the safety of pillar of the room and Pillar method. In this study, the evaluation method for the safety of the room and rock pillar in the room and pillar method was studied through numerical analysis. Numerical analysis was performed for a total of 125 cases using ground conditions, pillar width, and room width as parameters, and the results were derived. As for the safety factor of the pillar, it was confirmed that the safety factor increased when the strength of the ground increased, and it was confirmed that the increment in the safety factor decreased when the width of the pillar was widened. The room strain was evaluated by applying the Critical strain. As the width of the pillar became narrower, the Critical strain was higher, and as the width of the room became smaller, the Critical strain was smaller. As a result of the correlation analysis between the safety factor of the pillar and the room strain, it was possible to derive the upper limit of the room strain that can secure the standard safety factor of the pillar according to the width of the pillar. It is judged that the results derived from this study can be used as a guideline to secure the safety of the room when the actual design is performed in consideration of the ground conditions and room width.

A Study on the Measurement of Acoustic Emission and Deformation Behaviors of Rock and Concrete under Compression (암석 및 콘크리트의 압축변형거동과 미소파괴음 측정에 관한 연구)

  • 심현진;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Acoustic emission is n burst of microseismic waves generated by microscopic failure due to deformation in materials. The study on the detection of initiation and propagation of microcracks from acoustic emission measurement is very important for the evaluation of the stability of underground rock structures by the nondestructive letting method. In this study, acoustic emission was measured under uniaxial stiffness loading test used to obtain the complete stress-strain curves of marble and concrete used as reinforced materials of rock structures. The analysis of acoustic emission parameters and source location were performed to discuss the characteristics of the deformation and failure behavior of rock and concrete. And acoustic emission was measured under cyclic loading test to verify the Kaiser effect associated with the damage of materials, in situ stress of rock, and stress history of concrete structure.

  • PDF

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading (단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구)

  • Ko, Tae-Young;Lee, Seung-Cheol;Kim, Dong-Keun;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.307-319
    • /
    • 2011
  • Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production (가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2014
  • In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.

Derivation of Mohr Envelope of Hoek-Brown Failure Criterion Using Non-Dimensional Stress Transformation (응력무차원화 변환을 이용한 Hoek-Brown 파괴함수의 Mohr 파괴포락선 유도)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • In the course of performing the stability analysis of rock structures, there are times when the strength of the Hoek-Brown rock mass needs to be understood in terms of the internal friction angle and cohesion. In this case, the original Hoek-Brown criteion, giving the relationship between ${\sigma}_1$ and ${\sigma}_3$ at failure, have to be transformed to the corresponding Mohr envelope. A new approach to derive the Mohr envelope of the Hoek-Brown criterion is suggested in this study. The new method is based on the Londe's transformation making the stress components dimensionless. The correctness of the derivation leading to the new ${\tau}-{\sigma}$ relationship is confirmed by comparing the calculation results with the Bray's solution through a verification example.

A Numerical Study on the Behavior of Shotcrete Reinforced by Various Steel Supports (강재로 보강된 숏크리트 거동의 수치해석적 연구)

  • Lee, Sang-Don;Park, Yeon-Jun;Lim, Doo-Chul;Son, Jeong-Hun;You, Kwang-Ho;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.226-238
    • /
    • 2008
  • The steel ribs which are used to enhance the supporting capability of the shotcrete are estimated to be very effective, but their characteristics depending on the types of steel support are not well understood enough to be considered in the design stage. This paper describes the behavior of the shotcrete reinforced by various types of steel supports. Through flexural toughness test, major strength parameters such as flexural tensile strength, equivalent flexural tensile strength and residual tensile strength were obtained and used in the numerical analyses. Test results show that steel rebar was not as dependable as H-beam or lattice girder but close examination of the test results revealed that the specimen was failed in shear because of the shorter span than desired. Therefore tests on the properly dimensioned specimens are necessary for valid evaluation of the steel rebar reinforced shotcrete. In the first set of numerical stability analyses, shotcrete and steel supports were modelled separately. Then compared with the second set of analyses in which shotcrete and steel supports were regarded as a composite material. The two results coincided reasonably and this equivalent model turned out to be useful.

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.