• Title/Summary/Keyword: 터널 굴진면

Search Result 72, Processing Time 0.025 seconds

Analysis of Collapse Shape and Cause in the Highway Tunnel (고속도로터널의 붕락유형과 원인 분석)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.13-24
    • /
    • 2000
  • The collapse shapes and causes of tunnel in the highway were analyzed and reinforced methods of tunnel were investigated in the paper. Collapse shapes of tunnel are divided into three types such as subsurface failure, small scale wedge failure and slickenside strata failure. These three shapes consist of 35%, 50%, and 15%, respectively. The 85% of collapse was located near the entrance and exit of tunnel. The 15% was located at the intersection of emergency laybys. When tunnel collapses are analyzed by the failure concept, sliding failure amounts to more than 83%.

  • PDF

Shield TBM trouble cases review and parameter study for the cause analysis (쉴드 TBM 트러블 사례 및 매개변수 연구를 통한 원인 분석)

  • Koh, Sungyil;La, You-Sung;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.197-217
    • /
    • 2020
  • Shield TBM tunneling, used in the construction of Seoul subway line 7 and line 9, has been well known as a very efficient, as well as safe, tunneling method. Although the Shield TBM method has been known to be effectively used in poor ground conditions, a number of troubles have occurred during the use of the shield TBM, due to inappropriate machine selection, machine breakdown, and unpredicted ground conditions etc. In this study, several accidents and trouble cases occurred during excavation by Shield TBM, reported from Japan, were investigated. A series of numerical analysis was then performed to compare with the trouble cases and back-analysis results for the cause analysis. The lessons learned from the case studies are presented at the end.

A Numerical Analysis on Ground Deformation due to Tunnel Excavation : Case Study of Seoul Subway NATM Tunnel (터널 굴착에 따른 지반 변형 수치해석 : 서울 지하철 NATM 터널 해석 사례 연구)

  • 손준익;이원제
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.133-151
    • /
    • 1991
  • In this paper an analytic discussion was made for a finite element analysis performed for the case study of Seoul subway NATM tunnel. The effects mainly discussed on the ground deformation analysis were the staged tunnel excavation and the excavated distance from a tunnel facing. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied on the excavated tunnel face. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members. And the three dimensional supporting effect due to the tunnel facing was evaluated based on an elastic closed-form solution and a result of two dimensional axisymmetric finite element analysis.

  • PDF

소단면 터널에서 에멀젼폭약의 사압현상과 대책

  • Min, Hyeong-Dong;Jeong, Min-Su;Jin, Yeon-Ho;Park, Yun-Seok
    • Proceedings of the KSEE Conference
    • /
    • 2008.10a
    • /
    • pp.17-28
    • /
    • 2008
  • 국책사업이나 SOC의 확충을 위한 도로 및 철도의 건설에서 적용되는 터널의 단면크기를 보면, $50m^2$에서부터 $100m^2$이상의 중 대단면 터널이 주를 이루고 있으나, 전력구, 통신구, 소규모로 운영되는 광산의 채광용 터널, 용수를 위한 도수로터널 등 특수한 용도로 설계, 시공되고 있는 터널에서는 $20m^2$이하의 단면크기를 갖는 경우가 있다. 이러한 소단면 터널의 경우에는 협소한 작업공간으로 인하여 적용공법 뿐만 아니라 장비의 사용 또한 제약을 받게 되어 작업효율이 저하되고 공사기간이 늘어나게 되는 등 여러 가지 문제점을 안고 있다. 특히, 에멀젼 폭약을 사용하는 발파에서 먼저 기폭된 발파공의 충격압력에 의해 인접공의 폭약이 예비압축(Precompression)되어 사압현상을 일으키고 잔류약을 발생시키는 사례가 종종 발생하고 있다. 사압현상은 당해 발파의 실패와 함께 2차적인 사고의 위험요인이 될 수 있으므로 이를 방지하기 위한 대책을 수립하여야 한다. 이를 위해 기존 문헌을 통하여 사압현상의 원인과 발생 가능성을 검토하였고, 국내에서 주로 사용되는 에멀전폭약의 수중 내충격성시험과 충격압력 전달시험을 실시하여 사압현상의 발생정도를 측정하였으며, 사압현상이 발생한 소단면 터널현장을 대상으로 대책을 수립하여 적용하였다. 심발방법을 변경하여 전단의 충격압력을 견딜 수 있는 공간격을 확보하고 뇌관의 초시간격을 적절하게 배치한 발파패턴을 적용한결과, 사압현상을 억제하고 잔류약의 발생을 감소시켜 계획 굴진장을 확보하고 파쇄석의 크기를 감소시키는 등 양호한 결과를 얻을 수 있었다.

  • PDF

A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method (Pre-cutting 공법을 적용한 터널 확폭 시 기존 및 확폭터널의 거동에 관한 수치해석적 연구)

  • Kim, Han-Eol;Nam, Kyoung-Min;Ha, Sang-Gui;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Aging tunnels with small cross-sections can cause chronic traffic jams. This problem can be solved by widening the tunnel. In general, when the tunnel is expanded, the outer portion of the existing tunnel is excavated through a mechanical or blasting method. Such excavation affects not only the surrounding ground but also the existing tunnel. The application of the pre-cutting method can be a solution to these problems effectively. Therefore, if the widening of tunnel is performed by applying pre-cutting method, analysis of the impact of this method must be performed. In this study, in order to analyze the effect of applying pre-cutting in tunnel widening, numerical analysis is performed at six ground grades, from grade I to weathered rock. The analysis is performed with the expanding lane and the excavation length of pre-cutting as variables. In addition, the analysis is focused on the displacement of crown of the existing tunnel and the enlarged tunnel. As a result, the crown displacement of the enlarged tunnel is confirmed to converge at the same value regardless of the excavation length of the pre-cutting when the tunnel widening is completed. In the case of existing tunnels, uplift of crown occurs within 5 m of the front of the tunnel surface, and the shorter the excavation length of pre-cutting is found to be effective in preventing the occurrence of uplift.

A preliminary study on the optimum excavation sequence of a room-and-pillar underground structure (주방식 지하구조물의 최적 굴착공정에 대한 예비 분석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of galleries. As a result, its construction and economical efficiency can be governed by excavation sequence of galleries. Therefore, this study aims to study the optimum excavation scheme of a room-and-pillar underground structure by considering its various design factors such as ground conditions and excavation sequences. Drill-and-blast method is assumed as a excavation method for a room-and-pillar underground structure. In addition, two kinds of excavation patterns corresponding to a concurrent and a sequential excavation patterns are considered in this study. For the assumed conditions, the structural stability and the construction efficiency based on the number of faces and the travel distance of a jumbo drilling machine are analyzed for the two excavation patterns. Even though the two kinds of excavation patterns show almost the same structural stability as each other, the concurrent excavation pattern is relatively preferable to the sequential excavation pattern in terms of the number of faces in operation and travel distance of a drilling jumbo.

Numerical simulation for surface settlement considering face vibration of TBM tunnelling in mixed-face condition (복합지반에서 TBM 굴진 진동을 고려한 지표침하에 대한 수치모델링)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.333-339
    • /
    • 2015
  • In this paper, the surface settlement resulted from the shallow TBM tunnelling has been numerically simulated. TBM tunnelling is especially used in urban area to avoid serious vibration and noise caused by explosion in NATM. Surface settlement is one of the most important problems encountered in all tunnelling and critical in urban areas. In this study, face vibration of TBM excavation is considered to estimate surface settlement trend according to TBM extrusion. The dynamic excavation forces are calculated by total torque on the TBM cutterhead in mixed-face of soil and weathered rock condition with shallow depth. A 3-dimensional FDM code is employed to simulate TBM tunnelling and mechanical-dynamic coupling analysis is performed. The 3D numerical analysis results showed that dynamic settlement histories and trend of surface settlement successfully. The maximum settlement occurred at the excavation point located at 2.5D behind the face, and the effect of face vibration on the surface settlement was verified in this study.

A Case of Application in Hard Rock Tunnel and Development of High Performance Emulsion Explosives (MegaMEX) (고성능 Emulsion 폭약(MegaMEX)의 개발 및 경암 터널에서의 적용 사례)

  • Min Hyung-Dong;Lee Yun-Jae;Park Yun-Seok;Choi Kyung-Yeol
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2005
  • Safe and cheap emulsion explosives have recently replaced the existing CD explosives in order for people to reduce the prime cost and to prevent the safety accidents from happening in construction and civil engineering sites. However, the emulsion explosives have been in reality fared with difficulties in terms of the blasting force when using them in the tunnel constructed in the rock mass composed of hard rock. In this regards, this study is to verify their blasting efficiency and possibility of construction by applying MegaMEX, one of the high performance Emulsion explosives, to the rock mass of hard rock. In terms of their blasting efficiency such as advance ratio and fragmentation, it has turned out that they have overcome the limit of the existing Emulsion explosives and they have had the equivalent level of MegaMITE, one of the GD(Gelatin dynamite) types of explosives while they have been also advantageous to the environmental aspects.

A Case Study on the Application of the Electronic Detonator System in Tunnel Blasting (전자기폭시스템을 활용한 터널 시공사례)

  • 이상헌;윤지선;조영곤;안봉도
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2004
  • 터널 발파를 원활히 수행하기 위해서는 암반조건에 적합한 합리적인 설계와 정밀한 천공, 정확한 기폭초시가 기본요소로서 이는 현재 국내 터널 설계.시공 기술 및 기자재의 발달로 만족할 만한 성과를 얻을 수 있다. 특히. 터널발파에서 정확한 기폭초시 부여는 굴진율 및 버럭 파쇄율, 굴착예정선 미려도, 잔여 암반 손상도 등의 시공성에서 뿐만 아니라 소음 및 진동 발생율을 좌우하는 환경적인 측면에서 매우 중요한 요소이다. 기폭요소는 최초 도화선을 활용한 공업뇌관에서 전기뇌관, 비전기식뇌관의 순으로 기폭안전성과 정밀성 면에서 눈부신 성장을 이룩하여 왔으며 특히, 90년대 초에 개발되어 전 세계적으로 최근까지 지속적으로 사용량이 급증하고 있는 전자뇌관은 기폭방식에 일대혁신을 이루었다. 전자기폭 시스템은 기존뇌관의 초시를 결정하는 화약성분의 지연요소 대신에 IC board(전자회로)에 의한 Digital timer로 신호를 발생하여 초시를 결정하는 방식이다. 본 논문에서는 국내 최초로 전자기폭시스템을 활용하여 2003년 9원 23일에서 동년 11월 2일까지 강원도 양구 지역의 $\bigcirc\bigcirc$터널에 전자뇌관을 이용한 시험발파를 실시하였고, 발파에 의한 진동 등을 조사하여 그 효율성을 검토하였다. 이를 위해 전자뇌관의 특성과 장점을 최대한 샅리기 위하여 각공을 발파하는 방식, 즉 1지발에 1공을 발파하는 방식을 채택하고 일반 뇌관과 전자뇌관으로 설계를 하여 각각의 발파효율을 비교하여 보았다. 그 결과 발파진동의 경우 기존뇌관을 이용하여 1공씩을 1지발로 발파를 한 경우에는 18~56%의 진동저감 효과가 있었고. 본선 설계에 의해 진행된 발파에 비하여는 최대 70% 이상의 진동저감 효과가 있는 것으로 나타났다.

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.