• Title/Summary/Keyword: 터널보강공법

Search Result 172, Processing Time 0.026 seconds

Numerical Analysis on the Crack Control of Concrete Lining Reinforced by Composite Fibers (복합섬유보강 콘크리트 라이닝 부재의 균열제어를 위한 수치해석적 연구)

  • Yang, Woo-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2010
  • The concrete lining of a tunnel constructed by NATM used to be regarded as facing material which does not support any load from the surrounding ground. But the recent appraisal of the decrepit tunnels revealed that rockbolts and shotcrete deteriorate with time resulting in loss of supporting capability. Consequently, concrete lining has to support part of the load which used to be supported by rockbolts and shotcrete, and thus should be regarded as the final supporting structure in a tunnel. One of the common, and perhaps the most serious problem in concrete lining is the longitudinal cracks taking place at the tunnel crown. The longitudinal cracks, mostly related to the construction procedures, can be developed by many reasons such as the lack of thickness, wrong materials, bad curing environment, and excessive external forces. Many efforts has been made to control and suppress these cracks but efficient and economic way is yet to be found. For efficient crack control in concrete lining, reinforcement by composite fibers, which is the mixture of steel fiber and nylon fiber, is suggested in this study.

  • PDF

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

Performance Evaluation of Organic and Inorganic Fiber Reinforced Concrete in Tunnel Lining Structure (유·무기 섬유 혼입 터널 라이닝 콘크리트 부재의 성능 평가)

  • Lee, Jong-Eun;Kim, Tae-Won;Kim, Su-Man;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.110-118
    • /
    • 2009
  • The tunnel structure is widely used for transportation in the mountain area. To reduce the duration of construction and thus the expense, a tunnel excavation is often performed simultaneously with a tunnel lining in in-situ. However, cracking of the tunnel lining may occur arising from the vibrating impact in the excavation process. The present study concerns the role of steel fiber and nylon fibers in tunnel lining concrete to reduce the vibrating impact. As a result it was found that both the nylon fiber and steel fiber improved the durability and physical properties of concrete.

설계기준해설 - 과거 터널현장 국부적인 붕락 유형 사례 연구

  • Kim, Nak-Yeong;Hwang, Yeong-Cheol
    • 지반과기술
    • /
    • v.10 no.4
    • /
    • pp.20-31
    • /
    • 2013
  • 본 터널 붕락 사례 연구를 종합적으로 분석해 볼때, 시공 공정 중에 발생 가능한 붕괴 및 붕락은 앞서와 같이 과거의 여러 사례들을 토대로 분석함으로서 예측 할 수 있지만, 시공 외적인 요인에 대해서는 사실상 조사, 설계, 시공 중의 오류에 의해 발생되는 것이기 때문에 파악하기 어렵다. 본 터널 붕락사례를 통해 원인을 분석 정리 하면 다음과 같다. (1) 불규칙한 지반구조적 원인 대부분의 터널 붕락을 일으키는 불규칙한 지반구조는 과거 지반구조의 침식 또는 대규모 지반운동 등 지반구조의 급속한 변화에 기인한 것이다. 터널 시공전에 면밀한 사전 지반조사와 선진 보오링 등으로 정확한 지반구조를 파악한다면 이로 인한 터널 붕락은 최소화 시킬수 있다. (2) 기획과 설계단계에서의 오류 충분치 못한 지반조사에 의한 설계 및 부적절한 시공자재 사용등으로 터널 붕락이 발생 될수 있다. 터널 굴착 주변 지반조건과 이러한 지반조건에 적합한 터널 굴착 및 보강공법 등이 터널 설계시 심도있게 검토되어야 할 가장 중요한 요소이다. (3) 시공 및 관리에서의 오류 경험이 부족한 터널기술자의 현장 감독과 현장에서 수집되는 각종 계측자료의 신뢰성 부족과 결과의 재적용 미흡으로 효율적인 계측 및 지반정보를 활용한 정밀 시공이 이루어지지 않는 것도 터널 붕락의 중요한 요인으로 분석되었다. (4) 현장관리 조사서의 표준화 부족 터널굴착공사중 붕락이 발생된 현장의 막장조사결과를 보면 조사자가 임의로 표시를 하여 각 터널별 막장조사결과가 매우 상이할 뿐만 아니라 각 터널별로 기재방법, 양식이 달라서 실제 원인분석에 활용하기가 어려운 것으로 분석되었다.

  • PDF

A Case Study on the NATM Tunnel Excavation under the Soft Soil Ground Condition by Back Analysis Method (역해석 기법에 의한 연약지반 NATM터널 굴착사례 연구)

  • JO, Hyun;PARK, Jong-In;LEE, Ki-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.71-81
    • /
    • 2000
  • For the construction of NATM tunnel, it is required a design based on the accurate soil condition from soil investigation. However, in practice, it often designs tunnels without fully understanding the condition. Especially, when soft soil comes up, or ground water breaks out suddenly on the construction, it needs to secure the stability of tunnel by appropriate reinforcing construction according to the results of measurements on field superlatively reflecting the faced situation. This report reviews the mostsuitable stability of tunnel in the construction of soft soil of tunnel by numerical analysis using FDM after re-evaluated the soil properties through back analysis using the results of measurements to simulate abruptly occurred deformation. And applying steel pipe grouting row by row on the wall and the low part of tunnel and also applying the construction method of temporary invert after excavation of the upper part of tunnel, the excavation of soft soil tunnel secured the structural stability of tunnel has been completed.

  • PDF

Application of the SASW Method to the Evaluation of Grouting Performance for a Soft Ground of a Tunnel (터널 원지반의 그라우팅 보강 평가를 위한 SASW 기법의 적용)

  • 조미라;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.273-283
    • /
    • 2003
  • Fissured rock and soft ground always suggest, problems in the construction of the underground space. The stress release of the weak underground material by opening the underground space with a soft ground, fissures and joints can lead to the failure of the opening. Grouting of the weak rock and the soft ground, which is a process of injecting some bonding agents into the soft ground, is one of the measures to reinforce the soft ground and to prohibit the failure of the underground construction due to the stress release. The proper installation of the grouting is essential to ensuring the safety of the tunneling operation, so that the evaluation of the grouting performance is very significant. The general procedure of evaluating the grouting is coring the grouted section and measuring the compression strength of the core. However, sometimes when the grouted section is at the crown of the tunnel and the grouting is installed at a wide section, the coring is not good enough. This study is oriented to propose a new and a non-destructive procedure of evaluating the grouting performance. The proposed method is based on the wave propagation of elastic waves, and evaluates the shear stiffness of the ground and investigates the anomalies such as voids and cracks. The SASW ( Spectral-Analysis-of-Surface-Waves) method is one of the candidate s to make the inspection of the pouting performance, and is adopted in this study. The practical grouting activity was monitored by SASW method, and the proposed method was applied to the inspection of the grouting performance to check the verification of the proposed method.

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

Suggestion of a Design Method for UAM (강관 다단 그라우팅 공법(UAM)의 설계법 제안)

  • 박이근;임종철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.97-106
    • /
    • 2004
  • In case of tunnel construction with a shallow soil cover in cohesionless soils or highly weathered rocks, reinforcement measures are required for a tunnel stability during the tunnel construction. Recent developments show that the use of Umbrella Arch Method(UAM) as tunnel reinforcement and water cut-off in domestic projects has increased. Unfortunately, guidelines for the design and construction of UAM have not been established, only empirical designs and applications in tunnel construction have been performed so far. In this study, behaviour of the steel pipes installed on the tunnel roof was analyzed through the monitoring of bending and axial stresses of the pipes with the advance of the tunnel face. The monitoring results were used in the establishment of the loading mechanism around the pipe. This paper suggests, the guidelines used in the determination of the total length, overlapping length and lateral spacing of the reinforcing pipes obtained from the established loading mechanism.

A Study on the Pattern of Tunnel Collapse in Weathered Rockmass (풍화파쇄대에서 발생하는 터널 붕락 유형 연구)

  • Kim, Nagyoung;Park, Youngho;Shim, Jaewon;Park, Yongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, highway tunnel construction has rapidly been increased due to the limited ground usage and geographical characteristic in Korea, i.e. Korea consists of 70% mountains. In this paper, it was analyzed tunnel collapse patterns in the weathered rockmass. Recent tunnel collapse pattern is quite different from that of past ten years. Tunnels in past years have been collapsed at shallow valley area because of shear strength decrease after heavy rain. Tunnels, which have been constructed recently, were collapsed at even the deeper ground position after primary support. Also in the case that proper reinforcement was not applied, it caused excessive crack at shotcrete and local collapse near tunnel face. In this paper, it was analysed the cause of the recent tunnel collapses and proper reinforcement for the collapsed tunnels.

  • PDF