• Title/Summary/Keyword: 터널미기압파

Search Result 33, Processing Time 0.038 seconds

Prediction Method and Characteristics of Micro-pressure Wave on High-speed Railway Tunnel (고속선 터널미기압파 특성 및 예측기법 연구)

  • Yun, Su-Hwan;Nam, Seong-Won;Kim, Seok-Won
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • This paper describes a prediction method for micro-pressure wave emitted from a tunnel on the Kyung-bu high-speed railway. Pressure and micro-pressure wave were measured simultaneously to obtain some constants for the prediction method. The change of a micro-pressure wave were analyzed according to the speed of the train, the track bed type, and the distance from a tunnel portal. At a train speed of 300km/h, the micro-pressure wave of 4.0km long ballast track tunnel is about 7.5Pa; that of 3.3km long slab track tunnel is about 14.3Pa The strength of the micro-pressure wave decreases in inverse proportion to the distance and becomes about 0.5~1.0Pa at a point of 100m from the tunnel exit. Micro-pressure waves were predicted using the formula with the obtained the constants. Using a comparison between the predicted data and field measurement data, it was confirmed that micro-pressure wave can be predicted easily through the prediction formula.

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

Experimental Study on the Slit Cover Hood for Reducing the Micro Pressure Waves in High-speed Train-tunnel Interfaces (고속철도에서 슬릿커버후드의 터널 미기압파 저감성능에 관한 연구(II))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.3-11
    • /
    • 2000
  • Purpose of this paper is to investigate the hood configuration at a tunnel entrance to reduce the micro pressure wave that is generated according to train speed. Two configurations were examined for the tunnel of 0.5 km in length. The experimental results show that a slit cover hood installed at the entrance of the tunnel reduces the maximum micro pressure wave by 41.2%, and the configuration with a slit cover hood installed at the entrance and the $45^{\circ}$ slanted portal at the exit of the tunnel suppress the pressure wave by 47.7%.

  • PDF

Wave Phenomenonin High-Speed Railway Tunnel (고속철도 터널에서 발생하는 유체역학적 파동현상)

  • 김희동
    • Journal of the KSME
    • /
    • v.34 no.10
    • /
    • pp.796-807
    • /
    • 1994
  • 이 글에서는 고속철도 터널에서 열차에 의해 발생하는 압축파의 특성과 그의 전파거동에 관하여 기술하였다. 또 터널내에서 발생한 압축파가 터널 출구에서 충격음(미기압파)으로 방출되어 주 변의 환경에 큰 영향을 미치고 있다는 문제점을 지적하였으며, 이러한 소음의 발생 메카니즘과 소음의 저감 및 제어방법에 대하여 개괄적으로 기술하였다.

  • PDF

The High-speed train model for reducing the micro-pressure wave in railway tunnel (고속철도 터널에서의 미기압파 저감을 위한 모형실험)

  • Jang, Yong-Jun;Park, Won-Hee;Kim, Seung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1330-1336
    • /
    • 2007
  • The purpose of the study was to verify deduction of each coefficient necessary to analysis on micro-pressure waves and reliability of the analysis result. The tunnel running train model testing device used in the test was manufactured by scale of 1:60 and the study used a train model with ten cars long according to specifications of KTX model. The study applied tunnels with cross sections of $107.9m^3\;and\;95.1m^3$ and applied tunnel extensions with 1km, 0.75km and 0.5km. Also, the study tested train speed by changing it into 275, 300, 325 and 350km/h. The test device was a hydraulic launch system composed of a train model, a hydraulic launcher, a tunnel model and a brake. The study measured speed of a model trainby a speed sensor installed in the point of each 1.2m from the front of tunnel entrance and a pithead of tunnel exit and measured pressure change of internal tunnel continuously by installing pressure sensors in the entrance part of tunnel, in the middle part of tunnel and in the exit part of tunnel. As the result of the measurement, it was known that pressure slope of pressure wave happened in the entrance part of tunnel was increased by a nonlinear effect while spreading the tunnel or its pressure slope was reduced by diffusion. Also, the study compared and analyzed micro-pressure waves happened in the exit part of the tunnel by installing each kind of hoods in the entrance part of the tunnel to prevent reduction of micro-pressure waves.

  • PDF

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

The study about the development of snow shelter connecting serial tunnel for reducing the micro-pressure wave (연속터널에서 터널출구 미기압파를 저감 할 수 있는 스노우 쉘터 개발에 대한 연구)

  • Kim, Dong-Hyeon;Kang, Bu-Byoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.335-340
    • /
    • 2001
  • There are many tunnels located apart short distance from each other in mountainous country like Korea. Serial tunnels are connected by snow shelter in many cases. This study presents some countermeasures against micro-pressure wave at the tunnel exit using snow shelter. Through 1/60 scale model laboratory test, we find that snow shelter with 3.6m slit and slit cover show the effect of reducing the micro pressure wave to about 50.6%.

  • PDF