• Title/Summary/Keyword: 터널단면

Search Result 385, Processing Time 0.024 seconds

Theoretical study on rock excavation method by whitelight thermal stress (백열광을 이용한 무진동, 무소음 암반파쇄공법의 이론적 고찰)

  • Choi, Yong-Ki;Han, Hyun-Hee;Kim, Sung-Hwan;Kim, Hak-Joon;Arrison, Norman L.;Kong, Hoon-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.229-234
    • /
    • 2002
  • Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits such as improvement of workability, reducement of operation period, and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

  • PDF

Broadband Transmission Noise Reduction Performance of Smart Panels Featuring Piezoelectric Shunt Damping and Passive Characteristics (압전감쇠와 수동적 특성을 갖는 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;김재환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2002
  • The possibility of a broadband noise reduction of piezoelectric smart panels is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing material is bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to tune the piezoelectric shunt circuit, the measured electrical impedance model is adopted. Resonant shunt circuit composed of register and inductor in stories is considered and the circuit parameters are determined based on maximizing the dissipated energy through the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a square crosses sectional tunnel and a loud speaker is mounted at one side of the tunnel as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across the panels is measured. Noise reduction performance of a double smart panel possessing absorbing material and air gap shows a good result at mid frequency region except the first resonance frequency. By enabling the piezoelectric shunt damping, noise reduction is achieved at the resonance frequency as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

A Study on Influence Factors for Tunnel Collapse Risk Analysis using Delphi Method (델파이 기법을 활용한 터널 붕괴 위험도 분석을 위한 영향인자 도출에 관한 연구)

  • Kim, Jeong Heum;Kim, Chang Yong;Lee, Seung Soo;Lee, Jun Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • This research aims to define influence factors to perform an optimized section design and evaluate tunnel collapse risk during construction using Delphi technique. A total of five upper classification systems were constructed through literature review, pervious research analysis, and brainstorming of expert group for establishing influence factors. The $1^{st}$, $2^{nd}$, and $3^{rd}$ Delphi survey process was proceeded by panel group which is consisted 21 experts to prevent errors and bias in the expert judgement process. In Delphi $1^{st}$ survey, a total of 22 influence factors candidates were derived through open-ended questionnaire. In Delphi $2^{nd}$ survey, questionnaire was proceeded based on 7-point Likert scale method. In order to verify the validity, CVR (Content Validity Ration) analysis was performed to exclude inappropriate candidates. In the $3^{rd}$ survey, verification of influence factors was proceeded once more with the result of $2^{nd}$ survey, and lastly, a total of 14 influence factors was derived by CVR and COV (Content Validity Ration) analysis for response of experts.

Fire resistance assessment in construction joint of precast fireproof duct slab (프리캐스트 방식 내화풍도슬래브 시공조인트부의 화재저항성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Se Kwon;Kim, Tae Kyun;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.359-370
    • /
    • 2021
  • Duct slabs, which are used to build ventilation facilities in underground spaces with transverse ventilation system, need to secure fire resistance according to longitudinal and heavy vehicle traffic of tunnels. This study measured the temperature change at the construction joint of the precast fireproof duct slab which integrates fire resistance material and duct slab under the RWS fire scenario. As a result, it was confirmed that if there is no reinforcement of the construction joint, damage will occur in concrete inside the construction joint, leading to damage to the fireproofing layer. On the other hand, when one side of the construction joint was reinforced with fireproofing materials, it showed more than three times the fire resistance performance compared to when there was no reinforcement. At this time, cross-sectional losses of concrete and fireproofing layer were shown in blocks without reinforcement, but no damage was seen in the reinforced blocks.

The Experimental Study of the Ultimate Behavior of an Avalanche Tunnel Corner Rigid Joint Composited with a Centrifugal Formed Beam (초고강도 원심성형 보가 합성된 피암터널 우각부의 극한거동에 관한 실험연구)

  • Lee, Doo-Sung;Kim, Sung-Jin;Kim, Jeong-Hoi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.128-138
    • /
    • 2022
  • In this study, in order to apply ultra-high-strength concrete beams of 100 MPa or more manufactured by centrifugal molding as the superstructure of the avalanche tunnel, the purpose is to verify the structural safety of the corner rigid joint in which the centrifugal molded beam is integrated with the substructure, which is the negative moment area. A full-size specimen was manufactured, and loading tests and analysis studies were performed. In order to expect the same effect that the maximum moment occurs in the corner joint part of the upper slab end when the standard model of the avalanche tunnel is designed with a load combination according to the specification, a modified cantilever type structural model specimen was manufactured and the corner rigid joint was fixedly connected. A study was performed to determine the performance of the method and the optimal connection construction method. The test results demonstrated that the proposed connection system outperforms others. Despite having differences in joint connection construction type, stable flexural behavior was shown in all the tested specimens. The proposed method also outperformed the behavior of centrifugally formed beams and upper slabs. The behavior of the corner rigid joint analysis model according to the F.E. analysis showed slightly greater stiffness compared to the results of the experiment, but the overall behavior was almost similar. Therefore, there is no structural problem in the construction of the corner rigid joint between the centrifugally formed beam and the wall developed in this study.

Analysis of Blasting Overbreak using Stereo Photogrammetry in an Underground Mine (입체사진측량기법을 이용한 지하 광산의 발파 여굴 분석에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong;Lee, Sudeuk;Jeon, Seokwon;Jin, Yeon-Ho;Jung, Min-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.348-362
    • /
    • 2016
  • This study describes the results of blasting overbreak analysis using the stereo photogrammetry method in an underground mine. For comparing its quantitative measurements, LIDAR system was applied to the test site and blasting overbreak was analyzed for 4 test blasting operations. The difference in values obtained from the two methods showed only 0.81% in volume and 1.05% in area, respectively, therefore authors verify the field applicability of stereo photogrammetry method on underground mine. The volumes of overbreak measured from 4 test blastings were $29.84m^3$, $22.45m^3$, $14.54m^3$ and $5.46m^3$, respectively, in photogrammetry analysis on excavation surface, and it was shown that the volume of overbreak decreases with blasting sequence. From these measurements, it is concluded that the stereo photogrammetry method can describe the underground excavation surface effectively and the its quantitative data can be used for analysis of volume, area and overbreak of excavation zone.

A Numerical Study for Ground Stability Assessment in ○○Mine (○○광산의 지반 안정성 평가를 위한 수치해석적 연구)

  • Son, Min;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • This study is the numerical analysis for the ground stability assessment in ${\bigcirc}{\bigcirc}$mine. The subsidence factors applied to the numerical analysis were as follows. First, the deterioration of the rock mass properties by excavation of the disturbed zone. Second, using the average lateral pressure coefficient of Korea. Third, a study of the mine history. Fourth, the excavating collapsed rock mass in numerical analysis based on the assumption that the rock mass around the goaf was collapsed due to the mining. The developed methods were applied to the cross section (5+10) of the actual subsidence in ${\bigcirc}{\bigcirc}$mine. The feasibility of the numerical analysis methods was confirmed by providing the same results as those of the actual subsidence. Next, the developed methods were applied to the cross section (3+10) that had a high probability of subsidence and the ground stability was evaluated. The analysis results show that the vertical displacement for the 5+10 cross section occurs at a maximum of 46 mm, whereas the analysis results show that the vertical displacement for the 3+10 cross section occurs at a maximum of 7 mm. Hence, it is concluded that the probability for subsidence is low.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.