• Title/Summary/Keyword: 태양광 패널

Search Result 144, Processing Time 0.034 seconds

Analysis of visible light communication system using 15 watt LED and 40 watt solar panel (소형 창고형 공장 적용을 고려한 15와트 LED 조명과 40와트 태양광 패널을 활용한 가시광통신 송수신 시스템 분석)

  • Woo, Deok Gun;Mariappan, Vinayagam;Park, Jong Yong;Lee, Jong Hyeok;Kim, Young Min;Cha, Jae Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.608-614
    • /
    • 2018
  • In addition to the diffusion of ICT technology, various protocols of short range wireless communication technology are being applied for efficient information operation. However, due to limitations of short-range wireless communication, communication is not smooth in places where frequency environment is poor, such as frequency confusion and warehouse type factory. When an alternative is needed. The development of LED technology and expansion of infrastructure through LED based visible light communication is attracting attention as an alternative and spreading the usage in wide range now a days. In addition, the infrastructure has been expanded with solar panels in response to the development of smarthome built-in with renewable energy. In this situation, visible light communication using PD has been limitedly applied in a near environment where the receiving angle of the PD and the ambient light ensure the LoS and the influence of the ambient light is small. In order to solve this problem, we have implemented visible light communication using LED lighting with large current infrastructure and solar panel with large receiving area, and proposed a circuit for restoring accurate data even in ambient light. Through this study results, it is expected that visible light communication can be more widely used and this result used as the base data for visible light communication research using the solar panel as the receiver.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage accoding to Solar Module of Temperatur Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 추종 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.4-6
    • /
    • 2020
  • 태양광 모듈은 일사량과 온도에 의해 P-V 및 I-V의 특성이 변하여 최대 전력 점 추종 기업(MPPT, Maximum Power Point Tracking)이 필요하다. 기존의 기법들의 경우 모듈의 온도로 인해 개방전압이 변하거나 음영이 발생하면 태양광 모듈의 최대 전력 점을 추종하지 못한다. 본 논문에서는 태양광 패널에서의 P-V 및 I-V의 상관관계와 온도 변화에 대한 태양광 모듈의 최대 전력 점을 추종하는 기법을 제안한다. 본 논문에서 제안된 제어기법은 3kW 태양광 인버터 시스템을 구성하여 시뮬레이션을 통해 타당성을 검증하였다.

  • PDF

Detection method of Damage and Contamination of Outer Panel for Efficient Acquisition of Solar Energy (태양에너지의 효율적인 획득을 위한 외부 패널에 대한 손상 유무 및 오염정도 검출 방법)

  • Kim, Ji-In;Jeon, Ho Hyeong;Kim, Jung-Muk;Kwon, Goo-Rak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.836-837
    • /
    • 2018
  • 최근 신재생 에너지 자원으로 지속적인 개발이 이루어지고 있는 태양광발전시스템의 효율적이며, 사용자의 편의성을 위한 관리 및 운용 방법에 대한 연구가 다양한 방식으로 이루어지고 있다. 기본적인 분류로는 설계, 시공, 유지보수 등의 측면으로 연구가 이루어지고 있으며, 본 연구에서는 유지보수 측면에 대한 내용이다. 태양광발전시스템의 효율적인 에너지 수급을 위해서는 외부 패널에 대한 유지관리가 가장 중요하다. 패널은 실외에 설치되기 때문에 다양한 이유로 손상 또는 오염되기 쉽다. 이에 따라 본 논문에서는 실외 패널의 손상 유무 및 오염정도를 영상으로 판독하는 방법에 대해 설명한다.

Study on Generation Volume of Floating Solar Power Using Historical Insolation Data (과거 일사량 자료를 활용한 수상태양광 발전량 예측 연구)

  • Na, Hyeji;Kim, Kyeongseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.249-258
    • /
    • 2023
  • Solar power has the largest proportion of power generation and facility capacity among renewable energy in South Korea. Floating solar power plant is a new way to resolve weakness of land solar power plant. This study analyzes the power generation of the 18.7 MW floating solar power project located in Saemangeum, Gunsan-si. Since the solar power generation has a characteristic that is greatly affected by the climate, various methods have been applied to predict solar power generation. In general, variables necessary for predicting power generation are solar insolation on inclined surfaces, solar generation efficiency, and panel installation area. This study analyzed solar power generation using the monthly solar insolation data from the KMA (Korea Meteorological Administration) over the past 10 years. Monte Carlo simulation (MCS) was applied to predict the solar power generation with the variables including solar panel efficiency and insolation. In the case of Saemangeum solar power project, the most solar power generation was in May, the least was in December, the average solar power generation simulated on MCS is 2.1 GWh per month, the minimum monthly power generation is 0.3 GWh, and the maximum is 5.0 GWh.

A Study on the Building Design Guideline Development Considering Photovoltaic Panel Installation (태양광 패널 설치를 고려한 건축 디자인 지침 개발 연구)

  • Moon, Chang-Ho
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to propose the building design guideline considering photovoltaic panel installation through the analysis of relevant guidelines from home and abroad in terms of building design and solar panel installation. Conclusions can be summarized as followings; Considerations in building design : selection of the site with high solar accessibility, avoidance of the shade from the adjacent building & trees, south facing orientation of solar panel in building design, removal of shade on the solar panel from the part of building itself, load consideration of solar panel & fixing materials, safe passage securement for solar system maintenance, and planning of piping and mechanical room for solar system. Considerations in solar panel installation : harmonizing of solar panel with surrounding environment, unity of solar panel orientation & slope, regular maintenance of solar system, (in case of flat roof installation) solar panel installation afloat over the roof, installation area within the roof floor, and lower than parapet height, (in case of sloped roof installation) solar panel installation parallel with the roof slope, ventilation space securement below the panel, installation area within the roof surface, and similar material installation in empty space.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Development of Power Supply System and DC Lamp Module of all-in-one using the Solar Energy (태양에너지를 이용한 일체형의 전원공급시스템과 DC 램프 모듈 개발)

  • Ahn, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • To recently, light of the sun and fuel cell etc. which is new and renewable energy is developed with the direct current energy source mostly. And it is necessary that the utilization plan which does supply it properly. In this case, the direct current illumination system can be a typical alternative of it. The system similar to the development system is composed of type which connects to each other the photovoltaic pannel, the charge kit, and the battery bank. I develop all-in-one system which the power supply system and photovoltaic pannel which can charge and use efficiently. Additionally, I exploit the DC lamp module of three wave which can separate the electronic ballasts from the module. Developed the DC Lamp module of all-in-one which can turn on or can turn off, by operation of ON/OFF button. It can be used semipermanently by changing just only electronic ballasts.

The Monitoring System of Photo-voltaic using Smartphone (스마트폰을 이용한 태양광 발전 모니터링 시스템)

  • Park, Jin-Su;Sin, Dong-Suk;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.371-372
    • /
    • 2013
  • 태양광 발전 시스템(photo-voltaic system)은 시간별 발전량이 상이하고 발전중 과전류가 발생하거나 쇼트상태가 되면 태양광 발전 모듈인 태양광 판넬(Solar panels)이 파괴되거나 송전 선로에 이상이 생길 수 있다. 또한 태양광 발전시설의 설비는 고가이며 태양광 패널 하나의 손상이 전체 발전시설의 효율을 현저하게 떨어지게 되거나 생산이 중단된다. 그리고 생산효율이 낮아지거나 발전이 중단되면 금전적으로 심각한 손해가 발생한다. 이러한 경우를 대비하여 태양광 발전 시스템의 이상 유무를 판단하고 관리할 수 있는 시스템이 필요하며, 나아가서는 태양광 판넬에서 생산된 DC전력을 모니터링 할 수 있는 기능과인버터를 통해 사용자에게 공급되는 AC전력을 모니터링 할 수 있는 종합적인 전기 에너지 모니터링 시스템을 필요로 하고 있다. 본 논문은 태양광 발전 시스템을 관리하기 위한 전력 생산량 정보, 과전류 정보, 판넬의 온도를 원격으로 스마트폰 상에 모니터링 하며, 관리자가 원격으로 시설의 전력 생산량을 모니터링 할 수 있도록 구현하여 전력생산설비의 효율적으로 관리 할 수 있음을 제시하고자한다.

  • PDF

Histogram Learning-based Solar Power Plant Failure Reading System (히스토그램 학습 기반 태양광발전소 고장 판독 시스템)

  • Youm, SungKwan;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.572-573
    • /
    • 2021
  • By optimizing the development of IoT-type thermal image-based photovoltaic fault detection equipment and interworking with drones using a drone with an intelligent path movement function, real-time analysis of the acquired image data facilitates fault reading of solar power plants. , design a system that can read out the failure of a solar panel using the image subtraction analysis technique and the presentation of the basic technology that can improve the power generation rate of the solar power plant and make an efficient maintenance model.

  • PDF

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.