• Title/Summary/Keyword: 탑재

Search Result 4,803, Processing Time 0.029 seconds

A Study on Smart Soil Resistance Measuring Device for Safety Characterized Ground Design in Converged Information Technology (ICT 융합 환경에서의 안전 특성화 접지 설계를 위한 스마트 대지 저항 측정 기술에 관한 연구)

  • Kim, Hong-Yong;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • In this work, a new land-specific resistance measuring device (GM) and a measuring probe (Grounding Rod) are connected to the WENNER quadrant as power-line communication (PLC). In groups of two (P1,P2) probes, five to ten probes are installed in series on the ground at intervals of 1m, 2m, 4m, 8m, and 16m, respectively. If the PLC signal from the GMD is detected by the receiver of the Probe 1 (P1) for measurement, the minute voltage and current for measurement flow from the PSD (power supply) attached to the probe to the ground, and then, through the soil between P1 and P2, enters the Probe 1 (P2). The resistance value is then measured by the principle of voltage drop due to ground resistance. Measure the earth resistance every T seconds up to 1 trillion and store the measured data on the Arduino Server mounted on the main equipment. Stored measurement data can be derived from formulas by Ohm's Law and from inherent resistance (here,). Data obtained in real time will be linked to CDGES programs installed on Main PC, enabling data analysis and real-time monitoring of the ground environment on land. In addition, a three-dimensional display is possible with 3D graph support by identifying seasonal characteristics such as temperature and humidity of land (soils). The limitations of the study will require specific application measures of Test Bed for commercial access to a model that has been developed and operated experimentally.

Patrol Monitoring Plan for Transmission Towers with a Commercial Drone and its Field Tests (상용화 드론을 이용한 송전선로 점검방안 및 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan;Choi, Min-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • Various types of robots running on power transmission lines have been developed for the purpose of line patrol monitoring. They usually have complex mechanism to run and avoid obstacles on the power line, but nevertheless did not show satisfactory performance for going over the obstacles. Moreover, they were so heavy that they could not be easily installed on the lines. To compensate these problems, flying robots have been developed and recently, multi-copter drones with flight stability have been used in the electric power industry. The drones could be remotely controlled by human operators to monitor power distribution lines. In the case of transmission line patrol, however, transmission towers are huge and their spans are very long, and thus, it is very difficult for the pilot to control the patrol drones with the naked eye from a long distance away. This means that the risk of a drone crash onto electric power facilities always resides. In addition, there exists another danger of electromagnetic interference with the drones on autopilot waypoint tracking under ultra-high voltage environments. This paper presents a patrol monitoring plan of autopilot drones for power transmission lines and its field tests. First, the magnetic field effect on an autopilot patrol drone is investigated. Then, how to build the flight path to avoid the magnetic interference is proposed and our autopilot drone system is introduced. Finally, the effectiveness of the proposed patrol plan is confirmed through its field test results in the 154 kV, 345 kV and 765 kV transmission lines in Chungcheongnam-do.

Nitric Oxide Delivery using Nanostructures and Its Biomedical Applications (나노 구조체를 이용한 산화질소 전달체에 대한 연구 및 바이오메디컬 응용)

  • Choi, Yunseo;Jeong, Hyejoong;Park, Kyungtae;Hong, Jinkee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • The discovery of nitric oxide (NO) as a major signaling molecule in a number of pathophysiological processes - vasodilation, immune response, platelet aggregation, wound repair, and cancer biology - has led to the development of various exogeneous NO delivery systems. However, the development of ideal delivery system for human body application is still left as a challenge due to its high reactivity and short half-life in physiological condition. In this article, an overview of several nano-structures as potential NO delivery system will be presented, along with their recent research results and biomedical applications. Nano-size delivery system has immense advantages compared to others due to its high surface-to-volume ratio and capability for surface modification; thus, it has been proven to be effective in delivering nitric oxide with enhanced performance. Through this novel nano-structure delivery system, we are expecting to achieve sustained release of nitric oxide within adequate range of concentration, which ensures desired drug effects at the target site. Among different nano-structures, in particular, nanoparticle, microemulsion and nanofilm will be reviewed and compared to each other in respect of nitric oxide release profile. The proposed nano-structures for exogeneous NO delivery have a biological significance in that it can be further utilized in diverse biomedical fields as a highly promising therapeutic method.

Comparison of Visualization Enhancement Techniques for Himawari-8 / AHI-based True Color Image Production (Himawari-8/AHI 기반 True color 영상 생산을 위한 시각화 향상 기법 비교 연구)

  • Han, Hyeon-Gyeong;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Kim, Honghee;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.483-489
    • /
    • 2019
  • True color images display colors similar to natural colors. This has the advantage that it is possible to monitor rapidly the complex earth atmosphere phenomenon and the change of the surface type. Currently, various organizations are producing true color images. In Korea, it is necessary to produce true color images by replacing generations with next generation weather satellites. Therefore, in this study, visual enhancement for true color image production was performed using Top of Atmosphere (TOA) data of Advanced Himawari Imager (AHI) sensor mounted on Himawari-8 satellite. In order to improve the visualization, we performed two methods of Nonlinear enhancement and Histogram equalization. As a result, Histogram equalization showed a strong bluish image in the region over $70^{\circ}$ Solar Zenith Angle (SZA) compared to the Nonlinear enhancement and nonlinear enhancement technique showed a reddish vegetation area.

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.

Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments (IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템)

  • Song, Jin Su;Kim, Soo Jin;Shin, Young Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.277-284
    • /
    • 2021
  • Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.

Deep Learning-based Technology Valuation and Variables Estimation (딥러닝 기반의 기술가치평가와 평가변수 추정)

  • Sung, Tae-Eung;Kim, Min-Seung;Lee, Chan-Ho;Choi, Ji-Hye;Jang, Yong-Ju;Lee, Jeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.48-58
    • /
    • 2021
  • For securing technology and business competences of companies that is the engine of domestic industrial growth, government-supported policy programs for the creation of commercialization results in various forms such as 『Technology Transaction Market Vitalization』 and 『Technology Finance-based R&D Commercialization Support』 have been carried out since 2014. So far, various studies on technology valuation theories and evaluation variables have been formalized by experts from various fields, and have been utilized in the field of technology commercialization. However, Their practicality has been questioned due to the existing constraint that valuation results are assessed lower than the expectation in the evaluation sector. Even considering that the evaluation results may differ depending on factors such as the corporate situation and investment environment, it is necessary to establish a reference infrastructure to secure the objectivity and reliability of the technology valuation results. In this study, we investigate the evaluation infrastructure built by each institution and examine whether the latest artificial neural networks and deep learning technologies are applicable for performing predictive simulation of technology values based on principal variables, and predicting sales estimates and qualitative evaluation scores in order to embed onto the technology valuation system.

Location Trigger System for the Application of Context-Awareness based Location services

  • Lee, Yon-Sik;Jang, Min-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.149-157
    • /
    • 2019
  • Recent research has been actively carried out on systems that want to optimize resource utilization by analyzing the intended behavior and pattern of behavior of objects (users, consumers). A service system that applies information about an object's location or behavior must include a location trigger processing system for tracking an object's real-time location. In this paper, we analyze design problems for the implementation of a context-awareness based location trigger system, and present system models based on analysis details. For this purpose, this paper introduces the concept of location trigger for intelligent location tracking techniques about moving situations of objects, and suggests a mobile agent system with active rules that can perform monitoring and appropriate actions based on sensing information and location context information, and uses them to design and implement the location trigger system for context-awareness based location services. The proposed system is verified by implementing location trigger processing scenarios and trigger service and action service protocols. In addition, through experiments on mobile agents with active rules, it is suggested that the proposed system can optimize the role and function of the application system by using rules appropriate to the service characteristics and that it is scalable and effective for location-based service systems. This paper is a preliminary study for the establishment of an optimization system for utilizing resources (equipment, power, manpower, etc.) through the active characteristics of systems such as real-time remote autonomous control and exception handling over consumption patterns and behavior changes of power users. The proposed system can be used in system configurations that induce optimization of resource utilization through intelligent warning and action based on location of objects, and can be effectively applied to the development of various location service systems.

Study on On-Sight Image-Based Simulation Method for Predicting and Analyzing Flight Test Results of a Missile (유도무기의 비행시험 결과 예측 및 분석을 위한 현장 영상 기반 시뮬레이션 기법 연구)

  • Jeong, Dong-Gil;Park, Jin-Seo;Lee, Jong-Hee;Son, Sung-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.41-48
    • /
    • 2019
  • In modern-war campaign, precision-guided missiles are dominantly used to minimize the collateral damage. Imaging infrared seekers are widely applied for the precise guidance. Due to the high cost of the infrared detector, the cost for the one-shot weapon's test is a burden for the development. To reduce the test cost, a simulation method including imagery tracking is required, which is so-called integrated-flight simulation(IFS). The synthetic image generation(SIG)-based simulation method is typically used, which however cannot represent various environmental and target conditions. In this paper, a new IFS method is proposed using on-sight measured image to overcome the limitations of the SIG-based IFS(SIIFS). The target image acquired at the launching sight has been used only for checking the performance criteria of the image tracker and has not been tried for IFS since it has low resolution and little information. The study described in this paper, however, shows that the on-sight image-based IFS can predict the pre- and mid-course flight performance quite similarly and is very useful for the flight test analysis.

Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser (선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현)

  • Choi, Seungho;Kim, Seoyeon;Kim, Taesik;Min, Hong;Jung, Young-Hoon;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • Road surface measurement is an essential process for quantifying the degree and displacement of roughness in road surface management. For safer road surface management and quick maintenance, it is important to accurately measure the road surface while mounted on a vehicle. In this paper, we propose a sophisticated road surface measurement system that can be measured on a moving vehicle. The proposed road surface measurement system supports more accurate measurement of the road surface by using a high-performance line laser sensor. It is also possible to measure the transverse and longitudinal profile by matching the position information acquired from the RTK, and the velocity adaptive update algorithm allows a manager to monitor in a real-time manner. In order to evaluate the proposed system, the Gocator laser sensor, MRP module, and NVIDIA Xavier processor were mounted on a test mobile and tested on the road surface. Our evaluation results demonstrate that our system measures accurate profile base on the MSE. Our proposed system can be used not only for evaluating the condition of roads but also for evaluating the impact of adjacent excavation.