• Title/Summary/Keyword: 탐색적연구

Search Result 9,486, Processing Time 0.041 seconds

Inhibitory Effects of Four Solvent Fractions of Alnus firma on α-Amylase and α-Glucosidase. (사방오리나무 추출물의 α-amylase 및 α-glucosidase 저해활성)

  • Choi, Hye-Jung;Jeong, Yong-Kee;Kang, Dae-Ook;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.1005-1010
    • /
    • 2008
  • In this study, we investigated the inhibitory effect of four solvent fractions of Alnus firma on ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase activities. The inhibitory test showed that methanol (MeOH) extract and hexane (HX) fraction strongly inhibited pork pancreatin and salivary ${\alpha}-amylase$ activity. The MeOH extract and HX fraction of Alnus firma at the concentration of 4 mg/ml inhibited more than 70% of pancreatin and salivary ${\alpha}-amylase$ activity. The inhibitory effect of fractions has different specificities against ${\alpha}-amylase$ from pancreatin and salivary. In addition, the MeOH extract and butanol (BuOH) fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ at values of $IC_{50}$ $137.36\;{\mu}g/ml$ and $115.14\;{\mu}g/ml$ respectively. The MeOH extract and BuOH fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ than commercial agent such as 1-deoxynorjirimycin and acarbose. Inhibition kinetics of solvent fractions showed that ${\alpha}-glucosidase$ has been inhibited noncompetitively by the MeOH, EA and BuOH fraction. The aldose reductase from human muscle cell had been inhibited strongly by the MeOH extract and EA fraction at 57.996% and 83.293% at the concentration of $50\;{\mu}g/ml$, respectively. These findings may contribute to biological significance in that ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase inhibitory compounds could be used as a functional food and a drug for the symptomatic treatment of antidiabetic disease in the future.

Effects of Polymorphisms in the 3' Untranslated Region of the Porcine Mitochondrial calcium uptake 1 (MICU1) Gene on Meat Quality Traits (돼지 mitochondrial calcium uptake 1 (MICU1) 유전자의 3'UTR 내 SNP가 육질에 미치는 영향)

  • Jee, Yae-Sol;Cho, Eun-Seok;Jeon, Hyeon-Jeong;Lee, Si-Woo;Lim, Kyu-Sang;Kim, Tae-Hun;Lee, Kyung-Tai
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1232-1236
    • /
    • 2016
  • Mitochondrial calcium uptake 1 (MICU1) including two canonical EF hands, located in the mitochondrial inner membrane, is known to play a crucial role in the calcium uptake in mitochondria. Mitochondrial calcium uptake in muscular cells is related to post mortem shortening by calcium release from muscles. Therefore, the porcine MICU1 gene has been estimated as a genetic candidate for meat quality traits. In this study, variations on the exonic regions of the porcine MICU1 gene were investigated by sequencing cDNAs and tested for their association with meat quality traits. A total of 667 Berkshire heads (347 sows and 320 castrated boars) were used for this association test. Three SNPs were detected on the 3' untranslated region (UTR) of the porcine MICU1 gene. SNP1 (c.*136G>A) was associated with drip loss (p=0.017) and intramuscular fat content (p=0.039). In addition, SNP2 (c.*222G>A) and SNP3 (c.*485G>A) were associated with drip loss (p=0.018) and intramuscular fat content (p<0.001), respectively. In conclusion, it was verified that three variations on the 3' UTR of the porcine MICU1 gene were significantly associated with meat quality traits. It was also suggested that molecular biological analyses are needed to validate the function of variations on the 3 UTR of the porcine MICU1 gene.

Isolation, Identification, and Characteristics of Lactic Acid Bacteria for Production of Fermented Soymilk which Has Improved Sensory Quality (관능이 개선된 발효두유 제조를 위한 젖산균 분리·동정 및 특성)

  • Jung, Min-Gi;Kim, Su-In;Hur, Nam-Youn;Seong, Jong-Hwan;Lee, Young-Geun;Kim, Han-Soo;Chung, Hun-Sik;Kim, Dong-Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • In order to improve the sour taste and foul odor of fermented soymilk, bacteria were isolated from kimchi and identified. Of the 89 bacterial strains isolated from kimchi, 3 isolates produced fermented soymilk with a sour taste and foul odor. The selected bacterial strains R53, R83, and R84 were identified by morphological, biochemical, and 16S rRNA analyses as Weissella koreensis. The strain R83, which produced fermented soymilk having the mildest sour taste and foul odor, was selected for further investigation and named W. koreensis KO3. The optimum culture condition for the fermentation of soymilk by W. koreensis KO3 was at $30^{\circ}C$ for 12 h. When soymilk was fermented under the optimum culture conditions, the viable cell count reached up to $8.71{\times}10^8CFU/ml$ and pH and acidity reached as low as 6.02 and as high as 0.33%, respectively. Twenty-seven amino acids and their derivatives were detected in fermented soymilk. The amounts of serine, glycine, threonine, alanine, and aspartic acid, which contribute to a sweeter taste, increased during fermentation. Orinithine, which was not detected before fermentation, increased during fermentation. Sensory evaluation showed that W. koreensis KO3-fermented soymilk has improved bean, roasted nut, and sour flavors as well as an enhanced mouthfeel, appearance, preferability, and overall acceptability compared with those of standard fermented soymilk. With further study and development, soymilk fermented by W. koreensis KO3 could serve as a health-promoting food with favorable sensory qualities.

A study on the temperature inside clothing as fundamental data for development of the heat energy harvesting clothing (인체 전력에너지 수확의류 개발을 위한 의복내 온도 측정의 기초적 고찰)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Park, Sun-Hyung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.125-132
    • /
    • 2013
  • Recently, the consciousness of energy crisis is rapidly growing and sustainable eco-friendly energy sources are becoming issue. Therefore the portable electronic device requires new energy sources for providing continuous power supply and the power energy harvesting system of the human body that enables the power-harvesting research requests anytime, anywhere. One of the sources for energy harvesting is heat energy, which is the difference in temperature of the body and the surrounding environment. We tried to analyze the temperature difference between the environmental temperature and the temperature inside clothing according to the structure of the closed portion. And we examined the temperature difference between the environmental temperature and the temperature inside clothing according to the material of the clothing. The analysis showed that we have been able to get different results at parts of the body in the temperature inside clothing according to the structure of clothing. In upper torso of the chest and back, the temperature inside clothing of 'closed structure' was higher than the temperature inside clothing of 'opened structure'. In the section of arm and leg, it was reduced the difference of temperature inside clothing between 'closed structure' and 'opened structure'. It was particularly noticeable in the section of leg. The results of analysis of the difference between the environmental temperature and the temperature inside clothing according to the material of the clothing, in both cases of the two materials, 'closed structure' was higher than the 'opened structure' in the difference value between the environmental temperature and the temperature inside clothing. There was a difference according to the material in the section of leg. In this study, we outlined the basic guidelines for developing heat energy harvesting clothing by exploring the structure and material of clothing suitable for the heat energy harvesting.

  • PDF

Effects of SNP Markers of the Apolipoprotein E (APOE) Gene on Meat Quantity and Quality Traits in Korean Cattle (한우 아포지단백질 E (APOE) 유전자의 SNP Marker가 육량 및 육질형질에 미치는 영향)

  • Shin, Ki-Hyun;Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.108-113
    • /
    • 2009
  • Apolipoprotein E (APOE) is a plasma lipoprotein in mammals and plays an important role in the transport and metabolism of lipids such as phospholipids and triglycerides. Therefore, the APOE gene could be a candidate gene controlling lipid metabolism in beef cattle. This study was performed to identify single nucleotide polymorphisms (SNP) in the APOE gene and to investigate the effects of SNP genotype on the carcass traits such as meat quantity and quality in Korean cattle. For PCR amplification, pooled DNA made from unrelated 60 individuals was prepared and primer pairs were designed based on the cDNA sequence of exon 4 region of the bovine APOE gene. A SNP was identified at position 2034 (T/C substitution) of the exon 4 region in the APOE gene. PCR-RFLP procedure with restriction enzyme ACC I was developed for determining the SNP genotype for each of a total of 309 animals with pedigree information and performance records through the national progeny testing program. The frequencies of the genotypes TT, TC and CC were 10.9, 46.9 and 42.2%. Gene frequencies were 0.344 for T allele and 0.656 for C allele. The g.2034T>C SNP genotype showed a significant effect (p<0.05) on dressing percentage and meat color, respectively. Animals with the TT genotype showed higher dressing percentage than those with the CC genotype, and TT genotype had desirable meat color compared with CC genotype. These results suggest that the g.2034T>C SNP genotype of the APOE gene may be useful as a DNA marker for meat quantity index and dressing percentage in Korean cattle.

Antioxidant and Antibacterial Activities of Grape Pomace Fermented by Various Microorganisms (발효 미생물에 따른 포도가공 부산물의 항산화 활성 및 항균활성)

  • Kim, Kyoung-Hee;Yun, Young-Sik;Chun, Se-Young;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1049-1056
    • /
    • 2012
  • The antioxidant activities and antibacterial activities of grape pomace fermented using a variety of useful microorganisms were analyzed. There were several experimental groups: the control, with non-fermented grape pomace; the BS group, fermented by Bacillus subtilis; the LP group, fermented by Lactobacillus plantarum; the LC group, fermented by L. casei; the CU group, fermented by Candida utilis; the Y1 group, fermented by Saccharomyces cerevisiae strain CHY1011; the Y2 group, fermented by S. cerevisiae strain ZP 541; and the M group, fermented by a mixed strain culture of LP, LC, and CU. The yield of freeze-dried powder of fermented grape pomace by BS, LP, LC, CU, Y1, Y2, and M was 10.74%, 9.36%, 8.68%, 9.55%, 7.49%, 9.60%, and 9.71% w/w, respectively. The total polyphenol content of grape pomace showed the highest value in the control, but the fermented LP had higher total polyphenol content than those of other fermented grape pomace. The control and fermented LP had 0.16 mg/mL and 0.28 mg/mL as $IC_{50}$ values on DPPH radical scavenging, and 0.22 mg/mL and 0.53 mg/mL of ABTS radical scavenging activity, respectively. The FRAP value (5 mg/mL) showed the highest value on fermented LP (2.44 mM) but did not show a significant difference in the control group (12.27 mM). The fermented LC showed the antimicrobial activities against B. cereus (11 mm), B. subtilis (11 mm), Staphylococcus aureus (12 mm), Escherichia coli (12 mm), Enterobacter cloacae (10.5 mm), Salmonella enterica (11.5 mm), and Pseudomonas aerugionsa (11 mm) at 5 mg/disc, but the control and other fermented grape pomace did not show antimicrobial activities. Thus, fermented grape pomace by LC is shown to be producing a material that has antibacterial activity. In conclusion, grape pomace fermentation using various lactic acid bacteria strains showed excellent effects in promoting the production of functional materials. Especially, using L. casei exhibited an increase in antibacterial activity, and using L. plantarum exhibited antioxidant activity.

Antioxidant Activities and Cell Viability against Cancer Cells of Adenophora remotiflora Leaves (모시잎의 항산화 효과 및 암세포주에 대한 세포 독성)

  • Kim, In-Sook;Park, Kwon-Sam;Yu, Hyeon-Hee;Shin, Mee-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.3
    • /
    • pp.384-394
    • /
    • 2009
  • This study was performed to determine the antioxidative and anticancer effects of extracts from Adenophora remotiflora leaves. The antioxidative effects of the extracts were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging activity and hemoglobin-induced linoleic acid oxidative inhibition assays. The results indicated that the extracts had stronger effects than the synthetic antioxidant BHT at the same concentration. The $SC_{50}$ values (50% radical scavenging effect on $1{\times}10^{-4}$ M DPPH) of the methanol fraction, water extract, and BHT were 47.5 ${\mu}g$/mL, 74.6 ${\mu}g$/mL and 102.2 ${\mu}g$/mL, respectively. In addition the $IC_{50}$ values (hemoglobin-induced linoleic acid oxidation inhibition) of the methanol fraction, water extract, and BHT were 120.8 ${\mu}g$/mL, 135.6 ${\mu}g$/mL, and 150.2 ${\mu}g$/mL, respectively. This research also assessed decreases in the survival of BNLcl2 cells (normal liver cells) by solvent fractions of the A. remotiflora leaf extracts at various concentrations (1, 5, 10, 25, 50, 100, 250, 500, 1,000, 2,000 ${\mu}g$/mL). The water extract did not decrease survival at any of the concentrations when compared to the control group. The hexane, ethyl acetate, and methanol fractions decreased survival as compared to the control group by inducing cell toxicity at a concentration of 1,000 ${\mu}g$/mL and above. Therefore, an anticancer activity experiment was conducted using concentrations below 500 ${\mu}g$/mL. At 500 ${\mu}g$/mL, the methanol fraction decreased A549 cell (human lung carcinoma cells) survival by 46% as compared to the control group, presenting the greatest effect against cell survival. All extracts showed greater anticancer activity in Hep G2 cells (human liver carcinoma cells) as compared to the A549 cells. For the Hep G2 cells, the methanol extract decreased survival by 28% as compared to the control group at the concentration of 500 ${\mu}g$/mL, thus restraining lung cancer cell growth.

  • PDF

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells (혈관내피세포에서 c-Jun N-terminal kinase에 의해 조절되는 세포사멸에 고농도의 피노실빈이 미치는 효과)

  • Song, Jina;Park, Jinsun;Jeong, Eunsil;So, A-Young;Pyee, Jaeho;Park, Heonyong
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.416-424
    • /
    • 2015
  • Pinosylvin is a stilbenoid found in the Pinus species. Pinosylvin at ~pM to ~nM concentrations induces cell proliferation, cell migration and anti-inflammatory activity in endothelial cells. However, it was recently reported that pinosylvin at high concentrations (50 to 100 μM) induces cell death in bovine aortic endothelial cells. In this study, we conducted a series of experiments to discover how pinosylvin at a high concentration (50 μM) induces endothelial cell death. Pinosylvin at the high concentration was shown to induce endothelial cell apoptosis through enhancing caspase-3 activity, flip-flop of phosphatidyl serine, and nuclear fragmentation. We found that pinosylvin at the high concentration additively increased caspase-3 activity enhanced by serum-starvation or treatment with 100 μM etoposide. We also determined that pinosylvin at the high concentration promoted activations of c-Jun N-terminal kinase (JNK) and endothelial nitric oxide synthetase (eNOS). We further ran a series of experiments to find out which signaling molecule plays a critical role in the pinosylvin-induced apoptosis. We finally found that SP-600125, a JNK inhibitor, had an inhibitory effect on the pinosylvin-induced endothelial cell death, but L-NAME, an eNOS inhibitor, had no effect. These data indicate that JNK is involved in the pinosylvin-induced apoptosis. Collectively, pinosylvin at high doses induces cell apoptosis via JNK activation.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.