DOI QR코드

DOI QR Code

Effects of SNP Markers of the Apolipoprotein E (APOE) Gene on Meat Quantity and Quality Traits in Korean Cattle

한우 아포지단백질 E (APOE) 유전자의 SNP Marker가 육량 및 육질형질에 미치는 영향

  • Shin, Ki-Hyun (Division of Animal Science and Biotechnology, College of Life Science and Natural Resources, Sangji University) ;
  • Shin, Sung-Chul (Division of Animal Science and Biotechnology, College of Life Science and Natural Resources, Sangji University) ;
  • Chung, Ku-Young (Division of Animal Science and Biotechnology, College of Life Science and Natural Resources, Sangji University) ;
  • Chung, Eui-Ryong (Division of Animal Science and Biotechnology, College of Life Science and Natural Resources, Sangji University)
  • 신기현 (상지대학교 생명자원과학대학 동물생명자원학부) ;
  • 신성철 (상지대학교 생명자원과학대학 동물생명자원학부) ;
  • 정구용 (상지대학교 생명자원과학대학 동물생명자원학부) ;
  • 정의룡 (상지대학교 생명자원과학대학 동물생명자원학부)
  • Published : 2009.02.28

Abstract

Apolipoprotein E (APOE) is a plasma lipoprotein in mammals and plays an important role in the transport and metabolism of lipids such as phospholipids and triglycerides. Therefore, the APOE gene could be a candidate gene controlling lipid metabolism in beef cattle. This study was performed to identify single nucleotide polymorphisms (SNP) in the APOE gene and to investigate the effects of SNP genotype on the carcass traits such as meat quantity and quality in Korean cattle. For PCR amplification, pooled DNA made from unrelated 60 individuals was prepared and primer pairs were designed based on the cDNA sequence of exon 4 region of the bovine APOE gene. A SNP was identified at position 2034 (T/C substitution) of the exon 4 region in the APOE gene. PCR-RFLP procedure with restriction enzyme ACC I was developed for determining the SNP genotype for each of a total of 309 animals with pedigree information and performance records through the national progeny testing program. The frequencies of the genotypes TT, TC and CC were 10.9, 46.9 and 42.2%. Gene frequencies were 0.344 for T allele and 0.656 for C allele. The g.2034T>C SNP genotype showed a significant effect (p<0.05) on dressing percentage and meat color, respectively. Animals with the TT genotype showed higher dressing percentage than those with the CC genotype, and TT genotype had desirable meat color compared with CC genotype. These results suggest that the g.2034T>C SNP genotype of the APOE gene may be useful as a DNA marker for meat quantity index and dressing percentage in Korean cattle.

포유동물의 혈장 지단백의 일종인 apolipoprotein E (APOE)는 인지질 및 트리글리세라이드와 같은 지질과 콜레스테롤의 대사와 운반에 중요한 기능을 담당한다. 본 연구는 지질대사조절 관련 후보유전자로서 APOE 유전자를 대상으로 한우에서 이 유전자의 SNP를 탐색 발굴하고 SNP 유전자형이 육량 및 육질 등 도체형질에 미치는 영향을 분석하기 위하여 수행하였다. 먼저 혈연관계가 없는 한우 60두의 pooled DNA를 제작하여 APOE 유전자의 exon 4 영역을 포함하는 primer를 설계하여 PCR로 증폭한 결과 exon 4 영역내 2034번째 T>C 염기치환에 의한 SNP를 검출하였다. 후대검정우 총 309두에 대한 검정 개체별 SNP 유전자형을 판정하기 위하여 Acc I 제한효소를 이용하여 PCR-RFLP기법으로 분석한 결과 SNP 유전자형 출현빈도는 TT형 10.9%, TC형 46.9% 및 CC형 42.2%로 나타났으며, T와 C 대립유전자빈도는 각각 0.344와 0.656으로 추정되었다. 또한 APOE 유전자의 SNP 유전자형과 육량 및 육질 등 도체형질과의 연관성을 통계 분석한 결과 도체율 및 육색형질과의 유의적 연관성이 입증되었다. 즉, TT형을 가진 개체들이 CC형을 가진 개체들에 비해 도체율 값이 유의적으로 높았다(p<0.05). 또한 육색에서도 TT형을 가진 개체들이 CC형을 가진 개체들에 비해 좀 더 바람직한 육색을 나타내었다. 따라서 본 연구에서 검출한 한우 APOE 유전자의 SNP 유전자형은 한우의 육량지수 평가 및 도체율이 높은 개체선발을 위한 DNA marker로 활용 가능할 것으로 기대된다.

Keywords

References

  1. Bernabucci, U., Ronchi, B., Basirico, L., Pirazzi, D., Rueca, F., Lacetera, N., and Nardone, A. 2004. Abundance of mRNA of apolipoprotein $B_{100}$, apolipoprotein E, and microsomal triglyceride transfer protein in liver from periparturient dairy cow. J. Dairy Sci. 87, 2881-2888 https://doi.org/10.3168/jds.S0022-0302(04)73418-9
  2. Braeckman, L., De Bacquer, D., Rosseneu, M., and De Backer, G. 1996. Apolipoprotein E polymorphism in middleaged Belgian men: Phenotype distribution and relation to serum lipids and lipoproteins. Atherosclerosis. 120, 67-73 https://doi.org/10.1016/0021-9150(95)05681-5
  3. Buchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Winkelman-Sim, D. C., and Schmutz, S. M. 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA evels. Genet. Sel. Evol. 34, 105-116 https://doi.org/10.1186/1297-9686-34-1-105
  4. Gao, Y., Zhang, R., Hu, X., and Li, N. 2007. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77, 36-45 https://doi.org/10.1016/j.meatsci.2007.03.026
  5. Haegeman, A., Van Zeveren, A., and Peelman L. J. 2000. New mutation in exon 2 of the bovine leptin gene. Anim. Genet. 31, 79-79 https://doi.org/10.1111/j.1365-2052.2000.579-14.x
  6. Harrington, C. R., Anderson, J. R., and Chan K. K. 1995. Apolipoprotein E type E4 allele frequency is not increased in patienrs wirh sporadic inclusion-body myositis. Neurosci. Lett. 183, 35-38 https://doi.org/10.1016/0304-3940(94)11108-U
  7. Hodson, G. J. 1985. The pig as a model for studying kidney disease in man. Swine in biomedical research, Plenum Publishing, New York. pp. 1691-1704
  8. Mahley, R. W. 1988. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 240, 622-630 https://doi.org/10.1126/science.3283935
  9. Mensenkamp, A. R., Havekes, L. M., Romijn, J. A., and Kuipers, F. 2001. Hepatic steatosis and very low density lipoprotein secretion: The involvement of apolipoprotein E. J. Hepatol. 35, 816-822 https://doi.org/10.1016/S0168-8278(01)00249-5
  10. Mullen, A. M., Stapleton, P. C., Corcoran, D., Hamill, R. M., and White, A. 2006. Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci. 74, 3-16 https://doi.org/10.1016/j.meatsci.2006.04.015
  11. Muros, M. and Rodriguez-Ferrer, C. 1996. Apolipoprotein E polymorphism influence on lipids, apolipoproteins and Lp(a) in a Spanish population underexpressing apo E4. Atherosclerosis. 121, 13-21 https://doi.org/10.1016/0021-9150(95)06643-8
  12. Ramsoonder, J. J., Rucker, E. B., Vasquez, J. G., Gallagher, D. S., Grimm, D. R., Lunney, J. K., Schook, L. B., and Piedrahita, J. A. 1998. Isolation and genetic characterization of the porcine apolipoprotein E gene. Anim. Genet. 29, 43-47 https://doi.org/10.1046/j.1365-2052.1998.00273.x
  13. Rosen, E. D. 2005. The transcriptional basis of adipocyte development. Prostag. Leukotr. Ess. 73, 31-34 https://doi.org/10.1016/j.plefa.2005.04.004
  14. Takahashi, Y., Sato, K., Itoh, F., Miyamoto, T., Oohashi, T., and Katoh, N. 2003. Bovine apolipoprotein E in plasma : increase of ApoE concentration induced by fasting and distribution in lipoprotein fractions. J. Vet. Med. Sci. 65, 199-205 https://doi.org/10.1292/jvms.65.199
  15. Tsunoda, K., Harihara, S., Dashnyam, B., Semjidmaa, D., Yamaguchi, Y., Tanabe, Y., Sakai, N., Sato, A., and Sato, K. 2002. Apolipoprotein E and H polymorphism in Mongolian buryat: Allele frequencis and relationship with plasma lipid levels. Hum. Biol. 74, 659-671 https://doi.org/10.1353/hub.2002.0058
  16. Weisgraber, K. H., Innerarity, T. L., and Mahley, R. W. 1982. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J. Biol. Chem. 257, 2518-2521
  17. Zechner, R. 1997. The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism. Curr. Opin. Lipidol. 8, 77-88 https://doi.org/10.1097/00041433-199704000-00005

Cited by

  1. Identification of a SNP in Cattle HGD Gene with its Effect on Economic Trait in Hanwoo vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1168