• Title/Summary/Keyword: 탄화수소연료

Search Result 293, Processing Time 0.029 seconds

Thermodynamic Analysis on Steam Reforming of Hydrocarbons and Alcohols for Fuel Cell System (연료전지시스템을 위한 탄화수소 및 알코올 연료의 수증기 개질 특성에 관한 열역학적 연구)

  • Oh, Jin-Suk;Lee, Kyung-Jin;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. Fuel conversion system to hydrogen is an essential part for fuel cell ship. We have investigated thermodynamically the steam reforming characteristics of hydrocarbons and alcohols for the fuel conversion systems.

Characterization of Soot Produced from Thermal Decomposition of Hydrocarbon Fuel (탄화수소연료의 열분해 Soot발생특성 분석에 관한 연구)

  • KIM, HAKDUCK;KIM, CHANGYEAN;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.747-752
    • /
    • 2016
  • Soot and harmful exhaust gas produced by liquid hydrocarbon fuel caused various environmental problems. In this study, soot characteristics produced by thermal decomposition of acetylene and diesel were analyzed, which are formed at different temperatures. These fuels were observed to produce particulate matters, and collected soot samples were observed by using TEM & SEM. These were found to be significantly different in structure and crystallinity.

A Study of Structural Response of Pipes due to Internal Gaseous Detonation of Hydrogen- and Hydrogen-Air Mixtures (수소와 탄화수소 계열 연료의 비정상 연소에 의한 파이프 변형 연구)

  • Kim, Dae-Hyun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1094-1103
    • /
    • 2008
  • A fuel specific detonation wave in a pipe propagates with a predictable wave velocity. This internal detonation wave speed determines the level of flexural wave excitation of pipes and the possibility of resonant response leading to a large displacement. In this paper, we present particular solutions of displacements and the resonance conditions for internally loaded pipe structures. These analytical results are compared to numerical simulations obtained using a hydrocode(multi-material blast wave analysis tool). We expect to identify potential explosion hazards in the general power industries.

Two-Dimensional Numerical Study of Starting Process of a Ethylene Fueled Direct-Connect Scramjet Engine Combustor (에틸렌을 연료로 하는 Direct-Connect 스크램제트 엔진 연소기의 2차원 수치 해석)

  • Noh, Jin-Hyeon;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.569-572
    • /
    • 2009
  • The numerical simulations of hydrocarbon fueled scramjet engine have been studied less than them of hydrogen fueled scramjet engine. Ethylene is selected in hydrocarbon because of its good thermochemical properties and a direct-connect scramjet combustor at the American Air Force Research laboratory is taken to a two-dimensional simulation model. Ignition time delay of ethylene was monitored and air throttling was imposed to generate ignition inside the model scramjet.

  • PDF

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor (고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석)

  • Jae Seung Kim;Jiwan, Seo;Kyu Hong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.24-34
    • /
    • 2022
  • In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

Survey on the Core Technologies of Hydrocarbon-fueled PWR X-1 Scramjet Engine for X-51 (X-51의 PWR X-1 탄화수소 연료 스크램제트 엔진 핵심 기술 고찰)

  • Noh, Jin-Hyeon;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • After the successful flight test of X-43A, U.S. Airforce is developing missile-type X-51A SED (Scramjet Engine Demonstrator-Wave Rider). X-51A using PWR (Pratt and Whitney Rocketdyne) X-1 hydrocarbon fueled scramjet engine will have a ground test in 2008 and flight test in 2009. Technologies established though the X-51A program will be transferred to DARPA's Falcon program developing HTV (Hypersonic Test Vehicle)-3X and HCV (Hypersonic Cruise Vehicle). Present paper is an overview of propulsion core technologies of X-51 such as regenerative cooling of engine structures and combustion using liquid/supercritical JP-7 fuel.

  • PDF

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Fuel Supply of Direct Carbon Fuel Cells via Thermal Decomposition of Hydrocarbons Inside a Porous Ni Anode (다공성 니켈 연료 전극 내부에서 탄화수소의 열분해를 통한 직접 탄소 연료 전지의 연료공급)

  • Yi, Hakgyu;Li, Chengguo;Jalalabadi, Tahereh;Lee, Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.527-534
    • /
    • 2015
  • This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at $700^{\circ}C$ with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

Study of the Electrode Catalyst for Direct Borohydride Fuel Cel (알칼리 붕소 수소화물 직접이용 연료전지에서의 전극촉매 연구)

  • Jun Chang-Sung;Song Kwang Ho;Kim Sung Hyun;Lee Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.299-302
    • /
    • 2005
  • Direct Borohydride Fuel Cell은 알칼리 붕소 수소화물의 수용액을 이용하는 연료전지로 연료의 직접 산화반응을 통해 기존의 DMFC(직접 메탄을 연료전지)보다 높은 전류밀도와 OUV(Open Circuit Voltage)를 나타낸다. 또한 액체 연료를 사용하므로 장치 구성이 간단하며, 사용하는 연료가 반응성이 높은 알칼리 붕소 수소화물로 이루어져 있기 때문에 탄화수소 계열의 액체 연료와 달리 전기화학 반응이 비귀금속 전극에서도 쉽게 이루어질 수 있다는 장점을 가지고 있다 하지만 강알칼리 조건에서 전기화학 반응이 진행되므로 이에 적합한 재료로 장치를 구성해야 하며, 액체 상태의 연료가 전해질을 투과하는 현상인 크로스오버 문제를 해결해야 하고, 생성물인 $BO_2$-가 침적되어 전지효율을 떨어뜨리는 것을 방지해야 하는 문제점이 있다. 또한 알칼리 붕소 수소화물이 물과 반응하여 수소를 발생시키는 hydrolysis 반응을 억제하여야 하고 직접 산화반응만이 진행될 수 있도록 전지를 구성해야 연료효율을 높일 수 있다. 따라서 본 연구에서는 수소 생성반응일 hydrolysis 반응은 억제하고 연료의 직접 산화반응만을 진행시키기 위한 전극촉매에 대하여 연구하였다. 일반적인 저온형 연료전지의 전극촉매로 사용하는 Pt등의 귀금속 촉매와, 귀금속 촉매를 대체할 수 있는 Ni등의 비귀금속 촉매를 그 연구 대상으로 하였으며, 평가 방법으로는 unit cell station을 이용한 단위전지 성능측정 실험과 Potentiostat/Galvanostat을 이용한 half cell 실험을 병행하여 수행하였다.

  • PDF