DOI QR코드

DOI QR Code

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor

고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석

  • Jae Seung Kim (Department of Aerospace Engineering, Seoul National University) ;
  • Jiwan, Seo (Department of Aerospace Engineering, Seoul National University) ;
  • Kyu Hong Kim (Department of Aerospace Engineering, Seoul National University)
  • 김재승 ;
  • 서지완 ;
  • 김규홍
  • Received : 2022.06.17
  • Accepted : 2022.10.13
  • Published : 2022.10.31

Abstract

In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

초임계 영역에서 작동하는 탄화수소 연료를 사용하는 재생냉각채널의 냉각성능을 예측하기 위해서는 타당한 물성 예측이 필수이다. 본 연구는 고분자 탄화수소의 임계 압축인자에 따라 밀도와 비열을 적절하게 예측하기 위해 2-파라미터 상태방정식인 SRK(Soave-Redlich-Kwong) 및 PR(Peng-Robinson) 상태방정식과 이를 합한 3-파라미터 상태방정식인 RK-PR 상태방정식에 대한 비교 분석을 수행하였다. 대표적으로 낮은 임계압축 인자를 갖는 n-dodecane 연료와 높은 임계압축 인자를 갖는 JP-10 연료를 선정하여 두 연료의 열역학적 물성을 예측할 때 적합한 상태방정식을 제시하였다. 마지막으로 밀도와 비열의 예측 결과를 NIST REFPROP 데이터와 비교하여 검증하였다.

Keywords

Acknowledgement

본 연구는 스크램제트 복합추진시스템 특화연구실 과제(과제코드: 16-106-501-035)의 지원을 받아 수행하였으며, 이에 감사드립니다.

References

  1. Wang, Y., Li, S. and Dong, M., "Numerical study on heat transfer deterioration of supercritical n-decane in horizontal circular tubes," Energies, Vol. 7, No. 11, pp. 7535-7554, 2014. https://doi.org/10.3390/en7117535
  2. Zhang, S., Feng, Y., Jiang, Y., Qin, J., Bao, W., Han, J. and Haidn, O.J., "Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios," Acta Astronautica, Vol. 127, pp. 41-56, 2016. https://doi.org/10.1016/j.actaastro.2016.05.015
  3. Zhang, S., Feng, Y., Zhang, D., Jiang, Y., Qin, J. and Bao, W., "Parametric numerical analysis of regenerative cooling in hydrogen fueled scramjet engines," International Journal of Hydrogen Energy, Vol. 41, No. 25, pp. 10942-10960, 2016. https://doi.org/10.1016/j.ijhydene.2016.03.176
  4. Li, Y., Xie, G. and Sunden, B., "Flow and thermal performance of supercritical n-decane in double-layer channels for regenerative cooling of a scramjet combustor," Applied Thermal Engineering, Vol. 180, p. 115695, 2020.
  5. Lee, K.W., Oh, M.K., Ham, H.C., Hwang, K.Y. and Cho, H.H., "Heat transfer characteristics under recirculation zone of ramjet combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 11, No. 6, pp. 9-17, 2007.
  6. Dong, D., Lu, Y., Yuan, Y. and Fan, X., "Development of a radiative heating facility for studying flow and heat transfer in hydrocarbon-cooled structures," Review of Scientific Instruments, Vol. 89, No. 6, p. 064901, 2018.
  7. Yu, G., Li, J.G., Chang, X.Y., Chen, L.H. and Sung, C.J., "Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors," Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1263-1272, 2001. https://doi.org/10.2514/2.5874
  8. Qin, Z., Gong, S., Zhang, X., Bi, Q., Liu, Z. and Liu, G., "Experimental Measurement of JP-10 Density at 267 to 873 K under Pressures up to 6.00 MPa," Journal of Chemical & Engineering Data, Vol. 64, No. 1, pp. 218-225, 2018.
  9. Zhang, Q., Liu, X. and He, M., "Isobaric heat capacities of exo-tetrahydrodicyclopentadiene at temperatures from 323 K to 523 K and pressures up to 6 MPa," Fluid Phase Equilibria, Vol. 434, pp. 102-106, 2017. https://doi.org/10.1016/j.fluid.2016.11.031
  10. Wang, Y., Cheng, Y., Li, M., Jiang, P.X. and Zhu, Y., "Experimental and theoretical modeling of the effects of pressure and secondary reactions on pyrolysis of JP-10 at supercritical pressures," Fuel, Vol. 306, p. 121737, 2021.
  11. Gong, S., Zhang, X., Bi, Q., Liu, Z. and Liu, G., "Experimental Measurement of JP-10 Viscosity at 242.7-753.3 K under Pressures up to 6.00 MPa," Journal of Chemical & Engineering Data, Vol. 62, No. 11, pp. 3671-3678, 2017. https://doi.org/10.1021/acs.jced.7b00396
  12. Assael, M.J., Trusler, J.M. and Tsolakis, T.F., Thermophysical properties of fluids: an introduction to their prediction, Vol. 1, World Scientific, 1996.
  13. Zhu, H., Battistoni, M., Ningegowda, B.M., Rahantamialisoa, F.N.Z., Yue, Z., Wang, H. and Yao, M., "Thermodynamic modeling of trans/supercritical fuel sprays in internal combustion engines based on a generalized cubic equation of state," Fuel, Vol. 307, p. 121894, 2022.
  14. Jaubert, J.N. and Privat, R., "SAFT and cubic EoS: Type of deviation from ideality naturally predicted in the absence of BIPs. Application to the modelling of athermal mixtures," Fluid Phase Equilibria, Vol. 533, p. 112924, 2021.
  15. Jung, K., Kim, Y. and Kim, N., "Real-fluid modeling for turbulent mixing processes of n-dodecane spray jet under superciritical pressure," International Journal of Automotive Technology, Vol. 21, No. 2, pp. 397-406, 2020. https://doi.org/10.1007/s12239-020-0037-4
  16. Sengers, J.V., Kayser, R.F., Peters, C.J. and White, H.J., Equations of state for fluids and fluid mixtures, 1st ed., Elsevier, Amsterdam, North Holland, Netherlands, Ch. 4, 2000.
  17. Soave, G., "Equilibrium constants from a modified Redlich-Kwong equation of state," Chemical engineering science, Vol. 27, No. 6, pp. 1197-1203, 1972. https://doi.org/10.1016/0009-2509(72)80096-4
  18. Feng, Y., Qin, J., Zhang, S., Bao, W., Cao, Y. and Huang, H., "Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel," International Journal of Heat and Mass Transfer, Vol. 91, pp. 520-531, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.095
  19. Kim, S.K., Choi, H.S. and Kim, Y., "Thermodynamic modeling based on a generalized cubic equation of state for kerosene/LOx rocket combustion," Combustion and Flame, Vol. 159, No. 3, pp. 1351-1365, 2012. https://doi.org/10.1016/j.combustflame.2011.10.008
  20. Cismondi, M., and Mollerup, J., "Development and application of a three-parameter RK- PR equation of state," Fluid Phase Equilibria, Vol. 232, No. 1-2, pp. 74-89, 2005. https://doi.org/10.1016/j.fluid.2005.03.020
  21. Kim, J.S., Seo, J., Han, D. and Kim, K.H., "Prediction of thermochemical and transport properties of hydrocarbon aviation fuel in supercritical state with thermal decomposition," Fuel, Vol. 325, p. 124805, 2022.
  22. Lemmon, E.W., Huber, M.L. and McLinden, M.O., "NIST reference fluid thermodynamic and transport properties-REFPROP," NIST standard reference database-23-v7, 2002.
  23. Tassin, N.G., Reartes, S.R., Zabaloy, M.S. and Cismondi, M., "Modeling of solid-fluid equilibria of pure n-alkanes and binary methane+ n-alkane systems through predictive correlations," The Journal of Supercritical Fluids, Vol. 166, p. 105028, 2020.
  24. Cotabarren, N.S., Velez, A.R., Hegel, P.E. and Pereda, S., "Prediction of volumetric data in supercritical reactors," Journal of Chemical & Engineering Data, Vol. 61, No. 8, pp. 2669-2675, 2016. https://doi.org/10.1021/acs.jced.6b00110
  25. Kang, J. and Sung, H.G., "Kerosene/GOx dynamic combustion characteristics in a mixing layer under supercritical conditions using the LES-FPV approach," Fuel, Vol. 203, pp. 579-590, 2017. https://doi.org/10.1016/j.fuel.2017.04.088
  26. Kim, S.K. and Kim, Y., "Thermophysical properties of dimethyl ether at near-and supercritical pressures using generalized cubic EoS," The Journal of Supercritical Fluids, Vol. 92, pp. 16-23, 2014.
  27. McBride, B.J., "NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration," John H. Glenn Research Center at Lewis Field, 2002.
  28. Wang, H., Xu, R., Wang, K., Bowman, C.T., Hanson, R.K., Davidson, D.F. and Egolfopoulos, F.N., "A physics-based approach to modeling real-fuel combustion chemistry-I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations," Combustion and Flame, Vol. 193, pp. 502-519, 2018. https://doi.org/10.1016/j.combustflame.2018.03.019
  29. Xu, R., Wang, K., Banerjee, S., Shao, J., Parise, T., Zhu, Y. and Wang, H., "A physics-based approach to modeling realfuel combustion chemistry-II. Reaction kinetic models of jet and rocket fuels," Combustion and Flame, Vol. 193, pp. 520-537, 2018. https://doi.org/10.1016/j.combustflame.2018.03.021
  30. Bessieres, D., Saint-Guirons, H., and Daridon, J.L., "High pressure measurement of n-dodecane heat capacity up to 100 MPa. Calculation from equations of state," International Journal of High Pressure Research, Vol. 18, No. 1-6, pp. 279-284, 2000. https://doi.org/10.1080/08957950008200980
  31. Good, W.D., "Department of energy bartlesville ok bartlesville energy technology center," Thermodynamics of organic compounds, 1980.
  32. Assael, M.J., Trusler, J.M. and Tsolakis, T.F., Thermophysical properties of fluids: an introduction to their prediction (Vol. 1), World Scientific, 1996.
  33. Soave, G., Barolo, M. and Bertucco, A., "Estimation of high-pressure fugacity coefficients of pure gaseous fluids by a modified SRK equation of state," Fluid Phase Equilibria, Vol. 91, No. 1, pp. 87-100, 1993.  https://doi.org/10.1016/0378-3812(93)85081-V