• Title/Summary/Keyword: 탄소 확산

Search Result 247, Processing Time 0.022 seconds

Impact Analysis of Air Quality of Mobile Sources using Microscopic Emission and Dispersion Model (미시적 탄소배출량 및 대기확산 모형을 이용한 이동오염원에 의한 대기 질 영향 분석)

  • Yang, Choong Heon;Yang, Inchul;Yoon, Chun Joo;Sung, Jung Gon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2013
  • PURPOSES : The objective of this study is to investigate the capability of the combined model of traffic simulation, emission and air dispersion models on the impact analysis of air quality of mobile sources such as vehicles. METHODS : The improvement of the quality of life brings about the increasing interest of the public environment. Many endeavors including the travel demand management, the application of the state-of-the-art ITS technologies, the promotion of eco-friendly vehicles have been tried in transportation area to reduce the modal emissions. Especially, it is expected that the increasing number of eco-friendly vehicles in the road network would be able to reduce the pipe-tail emissions tremendously. From this perspective, we have performed a study on the impact analysis of the popularization of the eco-friendly vehicle in the place of the fossil fuel energy powered vehicles on the surrounding air quality using the combined framework of microscopic traffic simulation, emission and air dispersion model. RESULTS : The combined model successfully captured the effect of moving to the eco-friendly vehicles on the air quality, and the results showed that the increasing usage of eco-friendly vehicles can improve the surrounding air quality tremendously and that the air dispersion model plays a crucial role in the investigation of the air quality change around the main corridor. CONCLUSIONS : This study demonstrated the capability of the combined model showing the spatio-tempral change of emission concentration.

A Study on Heat and Smoke Exhaust Characteristics from the Subway Fire for Different Ventilation Modes (지하철 화재시 제연모드에 따른 열 및 연기 배출 특성 연구)

  • Chang, Hee-Chul;Yoon, Kyung-Beom;Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2008
  • This study is focused on the numerical predictions for different smoke-control ventilation modes for the subway fire. Smoke-control ventilation mode in the domestic platform is that exhausting for the smoke detected zones while supplying air or stopping any ventilation for other zones in the platform. Three cases of smoke control ventilation modes are considered. First and second case are present running smoke control mode in Korea. The third is that smoke-control ventilation fans equipped in the platform are operated in first 4 minute(platform evacuation time, NFPA130) since then the fans equipped in the platform are stopped and the fans equipped in the tunnels are operated. Distributions of heat, carbon monoxide and visible range are compared at a height of 1.7m(passenger breath/sight height) above the platform. The numerical results show that air supply fan operation in the platform causes the smoke disturbance and a rapid spread of the smoke. The switch-operation with fans in both the platform and tunnel are better than operation with only platform fans in smoke rejection efficiency.

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.

Transdermal Drug Release of Polymer Matrix of Unsaturated Poly(3-hydroxyalkanoate) (불포화 폴리(3-히드록시알칸오에이트)를 기질로 한 경피제제의 약물방출)

  • 이수홍;신병철;이영하;김형우;김영백;김승수
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.536-541
    • /
    • 2003
  • Unsaturated poly(3-hydroxyalkanoate) (UPHA) was biosynthesized and the properties of drug delivery using the polymer matrix were investigated. The biosynthesis of UPHA was carried out by pH-stat fed batch fermentation of Pseudomonas oleovorans (ATCC 29347) grown solely with 10-undecenoic acid as a carbon source. The physical and chemical properties of the biosynethesized UPHA were characterized using NMR, FT-IR, GPC and DSC. The drug release experiments were carried out using HPLC with a diffusion cell fur the release amount of ketoprofen as model drug. The effects of crosslinking degree, patch thickness, and enhancer on the drug release were studied. The drug release rate was linearly decreased and consistent with increased crosslinking degree of the polymer matrix. The duration of drug release was enhanced by the Increased patch thickness. The drug release rate was increased with increased amount of propylene gylcol as an enhancer.

Combustional Characteristics of Living Leaves for Five Shrubs in Youngdong Areas (영동지역 관목류 5가지 수종 생엽의 연소특성)

  • Lee, Hae-Pyeong;Lee, Si-Young;Park, Young-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • In this study, we have investigated the combustibility of five shrubs growing in Youngdong area such as Lindera obtusiloba, Lespedeza maximowiczii, Zanthoxylum piperitum, Zanthoxylum schinifolium, and Corylus heterophylla var. thunbergii using the ignition temperature tester, the cone calorimeter and the smoke density chamber in order to estimate the danger of a forest fire. The results showed that Lespedeza maximowiczii has the lowest ignition temperature, the fastest ignition time and the highest average release concentrations of CO and $CO_2$. Zanthoxylum piperitum and Zanthoxylum schinifolium showed the highest level in heat release and smoke release, respectively. Therefore, we have concluded that Lespedeza maximowiczii has the highest ignitibility, Zanthoxylum piperitum the most intensive fire spread and fire intensity, and Zanthoxylum schinifolium and Lespedeza maximowiczii most difficult to escape from a forest fire.

Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex (카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구)

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • Polymerization of carboxylated styrene-butadiene latex takes longer time than that of acrylic emulsion due to delocalization of radical in butadiene unit having conjugated double bond. A latex stability is the most important properties owing to use intact without separating polymer from base latex. For reducing polymerization time without decreasing any properties of latex, carbon tetra-chloride which has been used as the most popular chain transfer agent was replaced to combination of tert-dodecylmercaptane and ${\alpha}$-methylstyrene dimer. The replacement yielded reducement or 2 hr in polymerization time. In the increment step, charge amount of acrylic acid was limited to 0.3 part to restrain viscosity enhancement. Just after initial step, addition of 0.1 part acrylamide prevent polymer chain from diffusing between two region followed by giving hardness and final good adhesive force to latex particles.

Electrochemical Behaviors for Cathodic Reaction of N'-aryl-N-alkyl-N-nitrosourea Drivatives (N'-aryl-N-alkyl-N-nitrosourea 유도체의 환원반응에 대한 전기화학적 거동)

  • Won, Mi Sook;Kim, Jack C.;Jeong, Euh Duck;Shim, Yoon-Bo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.842-847
    • /
    • 1995
  • The electrochemical reduction reactions of N '-aryl-N-alkyl-N-nitrosourea derivatives with a glassy carbon electrode were diffusion controlled and irreversible. The exchange kinetic constant ko values for reduction reaction of the N '-aryl-N-alkyl-N-nitrosoureas were at the range of $1.48{\times}10^{-6}{\sim}5.32{\times}10^{-7}\;cm/sec.$ The $k_0$ values for phenyl substituted on the aryl position were about 1.3∼2.8 times higher than that of other substituents. The same substituent for aryl groups on the both of N '-aryl-N-alkyl-N-nitrosourea and N '-aryl-N-(2-chloroethyl)-N-nitrosourea exhibited same value. The $E_p$ value was shifted to the negative direction as pH increased. The number of protons participated to the reduction was 4∼5, respectively. The substituent effect of aryl group on the reduction potential was not observed in this case.

  • PDF

Analysis of Soot Particle Morphology Using Rayleigh Debye Gans Scattering Theory (RDG 산란 이론을 이용한 그을음 탄소 입자의 형상 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.641-646
    • /
    • 2016
  • Soot particles generated by fossil fuel combustion normally have fractal morphology with aggregates consisting of small spherical particles. Thus, Rayleigh or Mie elastic light scattering theory is not feasible for determining the fractal properties of soot aggregates. This paper describes a detailed process for applying Rayleigh-Debye Gans (RDG) scattering theory to effectively extract the morphological properties of any nano-scale particles. The fractal geometry of soot aggregates produced from an isooctane diffusion flame was observed using ex situ transmission electron microscopy (TEM) after thermophoretic sampling. RDG scattering theory was then used to analyze their fractal morphology, and various properties were calculated, such as the diameter of individual soot particles, number density, and volume fraction. The results show indiscernible changes during the soot growth process, but a distinct decreasing trend was observed in the soot oxidation process. The fractal dimension of the soot aggregates was determined to be around 1.82, which is in good agreement with that produced for other types of fuel. Thus, it can be concluded that the value of the fractal dimension is independent of the fuel type.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Plastic Fire of Commercial Building (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 - 판매시설의 플라스틱 화재를 중심으로 -)

  • Jang, Hyo-Yeon;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.55-62
    • /
    • 2018
  • To improve the prediction result with enhanced reliability of domestic Performance-Based Design (PBD), actual scale fire tests were carried out on products made of plastics from sales facility combustibles. The commercial buildings were separated into single and multiple combustibles for the experimentation of fire spread caused by the sales shelves where the various combustible materials are displayed. A according to the maximum heat release rate, exposed area and weight of the combustible material, the results revealed a linear relationship of as 93% and 89%. In addition, analysis of the gas concentrations for various combustibles showed that $CO_2$ has a linear relationship, whereas the CO concentration indicated exponential function. These results can be applied to reliable fire source information in PBD of plastic fire source in commercial buildings. This may be applied as fire source information representative of a plastic fire in commercial buildings through additional experiment using the area of the shelf in actual commercial buildings.