• Title/Summary/Keyword: 탄소 배출

Search Result 1,059, Processing Time 0.034 seconds

An Identification of Project Sites for Lowering Carbon Emissions and Saving Forests in DPR Korea (북한의 탄소저감과 산림보존을 위한 사업대상지 선정방법 연구)

  • Kim, Oh Seok;Youn, Yeo-Chang
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.264-274
    • /
    • 2014
  • The main purpose of the current research is to analyze DPR Korean carbon emissions due to forest loss and to identify potential project sites for REDD implementation. REDD (Reducing Emissions from Deforestation and forest Degradation) is a global environmental policy that is geared towards lowering carbon emissions in developing and least developed countries through saving forests that are vulnerable to future deforestation. DPR Korea is known for its underdevelopment as well as its serious environmental degradation, but limited research exists regarding these issues. The research employs remotely sensed global data and forest carbon stock information from the existing literature to quantify carbon emissions in DPR Korea. It turns out that the country may have had emitted about 82.6 to 149.3 $MtCO_2e$ due to forest loss between 2005 and 2009. A few administrative districts are delineated as prospective REDD sites, of which the outcomes of Local Moran's I represent high rates of deforestation. In brief, it appears there is a great possibility to lower carbon emissions in DPR Korea via REDD implementation.

  • PDF

An Empirical Study on Price discovery between Emission Spot and Futures Markets in EU ETS Emission Markets (EU ETS 탄소시장에서 EUA 선물의 가격발견에 관한 연구)

  • Kim, Soo-Kyung
    • Management & Information Systems Review
    • /
    • v.33 no.3
    • /
    • pp.93-104
    • /
    • 2014
  • This study investigates price discovery between BlueNext spot and futures in EU ETS carbon emission markets using vector error correction model, GG and Hasbruck information ratio. Especially EUA is European Union Allowances traded on the Emissions Trading Scheme. This emission asset attracts and increasing attention among operators, investors and brokers on emission markets. In this study, we found BlueNext spot and EUA futures market are cointegrated. Following the preceding studies, we judged that EUA futures market contribute to the price discovery process than BlueNext spot market when this GG and Hasbrouck information ratio for BlueNext market are larger than 0.5. In other words, the futures market of EUA plays a more dominant role in price discovery than the spot market.

  • PDF

Estimation of Carbon Emissions Reductions by the Penetration Rates of Autonomous Vehicles for Urban Road Network (자율주행 자동차 도입 수준에 따른 도시부 도로 탄소배출량 감소효과 추정)

  • Lee, Hyeok Jun;Park, Jong Han;Ko, Joonho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.162-176
    • /
    • 2021
  • Recently, Autonomous Vehicle(AV) has been expected to solve various transportation problems. s the problem of environmental pollution become serious, research to reduce pollution is needed. However, empirical research on AV related pollution is insufficient. Based on this background, this study analyzed network performance changes and CO2 emissions introduc AVs and Electric Vehicles(EV) in eight intersections. The results show that when AVs with internal combustion engines were, the effect of carbon reduction over the network was insignificant. On the other hand, it was that the total amount of CO2 generated in the network decreased significantly when EVs and autonomous electric vehicles were emissions in the transportation sector.

A Study on the Effect of the Urban Regeneration Project on the Reduction of Carbon Emission - A Case Study of Jeonju Test-Bed - (도시재생사업 적용에 따른 탄소저감 효과 - 전주TB지역을 대상으로 -)

  • Park, Kiyong;Lee, Sangeun;Park, Heekyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • This study mainly focuses on urban regeneration project as a countermeasure to resolve climate change issues by analyzing the carbon-reduction effect of Jeonju test-bed cases. First, an urban regeneration project is designed for city, Jeonju by analyzing its environmental problems and potential improvement. Then, carbon emission and reduction amounts are evaluated for different businesses and scenarios. Carbon emission sources are classified according to a standard suggested by IPCC, and the emissions are calculated by various standard methods. The result shows that carbon emission amount in Jeonju test-bed is 102,149 tCO2eq. The fact that 70% of the emission from energy sector originates from buildings implies that urban regeneration projects can concentrate on building portions to effectively reduce carbon emission. It is also projected carbon emission will decrease by 3,826tCo2eq in 2020 compared to 2011, reduction mainly based on overall population and industry shrinkage. When urban regeneration projects are applied to 5 urban sectors (urban environment, land use, green transportation, low carbon energy, and green buildings) total of 10,628tCO2eq is reduced and 4,857tCO2 (=15.47%) when only applied to the green building sector. Moreover, different carbon reduction scenarios are set up to meet each goal of different sectors. The result shows that scenario A, B, and C each has 5%, 11%, and 15% of carbon reduction, respectively. It is recommended to apply scenario B to achieve 11% reduction goal in a long term. Therefore, this research can be a valuable guideline for planning future urban regeneration projects and relative policies by analyzing the present urban issues and suggesting improvement directions.

Electric Vehicle Rental System Using Next.js and Express.js (Next.js와 Express.js를 활용한 전기 자동차 대여 시스템)

  • Hur Tai-sung;Oh Ju Heon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.469-470
    • /
    • 2023
  • 내연기관 자동차는 연료 소모로 인해 대기 중에 유해 물질과 온실가스를 배출한다. 반면에 전기 자동차는 전기로 작동되어 대기 중 오염을 줄이고 친환경적인 운행을 제공한다. 전기차 대여 시스템을 도입함으로써, 사용자들에게 친환경적인 교통수단을 이용할 수 있는 기회를 제공하고, 탄소 배출량을 줄이는 데 크게 기여할 수 있기에 해당 연구를 진행하였다. 이 연구에는 React 기반의 Next.js 웹 프레임워크를 이용하여 클라이언트 측과 서버 측 렌더링을 지원하고 사용자들에게 빠른 반응 속도와 사용 편의성을 제공한다. Bootstrap을 이용하여 사용자 인터페이스(UI)를 개발하고, 전기 자동차 대여 서비스에 필요한 화면을 구성하였다. 또한 Node.js 기반의 Express.js 웹 프레임워크를 이용하여 서버 사이드 로직과 RESTful API를 개발하는 데 사용하고 데이터베이스와의 통신, 사용자 인증, 대여 정보 관리 등을 처리하였다. 이러한 기술적 개발을 통해 전기 자동차 대여 시스템은 실용적이고 효율적인 서비스를 제공하며, 환경 보호와 탄소 배출 감소에 기여할 수 있는 프로젝트라고 볼 수 있다.

  • PDF

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe (유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석)

  • Yoon, Kyungsoo;Hong, Won Jun
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.165-204
    • /
    • 2022
  • This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

Economic impacts of linking carbon markets among Korea, China and Japan (한중일 탄소시장 연계의 파급효과 분석)

  • Kim, Yong Gun
    • Environmental and Resource Economics Review
    • /
    • v.21 no.4
    • /
    • pp.809-850
    • /
    • 2012
  • A linkage of emissions trading schemes among Korea, China and Japan demonstrates overall increase in gross domestic product (GDP). However, it also demonstrates reductions in household consumption, and the impact of integration could be very unbalanced between the countries. In particular, the reductions in domestic marginal costs are high in both Korea and Japan. Therefore, household consumptions in the two countries decrease despite increases in GDP because Korea and Japan will be purchasers of emissions rights. China, on the other hand, will experience the opposite. The unbalanced impacts on real household consumptions are intensified when emission credits are allocated via paid auctions instead of free allocation. This was demonstrated to be the case because the circumstances of three countries are intensified when using a paid emissions credit allocation scheme, and their differences could potentially hinder the cooperation between the three countries. Under the free allocation scheme, the emission trading schemes' unbalanced impacts on consumption could be mitigated, but unavoidable negative impacts of free allocation schemes are also serious. Based on the analysis results, Korea, China, and Japan will individually face complicated impacts if their carbon markets are integrated. Although the GDP of three countries will increase as a result of carbon market integration, the benefits of integration will surely be unbalanced, and the three countries will experience negative impacts in terms of actual consumption or employment. In particular, increases in income and consumption, reductions in employment, and energy dependence by credit purchasers (Japan and Korea) and production reduction and possibility of offshoring faced by revenue producing countries (China) could serve as a barrier to carbon market integration. To maximize the positive influences of carbon market integration while reducing the risks of negative side effects, the development and application of complimentary policy tools, such as import duties or discounts for emissions credits, are required.

  • PDF

Study on Geostatistical Method for an Effectiveness Analysis on Carbon Reduction Policy - Focusing on the Carbon Point System (탄소저감정책 효과분석을 위한 공간통계기법 적용방안 연구 - 탄소포인트제도를 대상으로 -)

  • Hwang, Hae-Seong;Joo, Yong-Jin;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Carbon Point system is Climate Change Action Program by providing incentives in proportion to voluntary reduction of energy consumption such as electricity, gas and water for houses, commercial facilities. So far, existing researches have been limited to construction of GHG(Green House Gas) Inventory and have little attention to empirical impact analysis on carbon reduction policy regarding the residential section. Therefore, this paper is intended to provide convincing findings of impact analysis on carbon reduction, revolving around the carbon point system. For this, we firstly calculated the carbon emission by using electricity and gas usage data in household targeting to Seongbuk-Gu. Carrying out IPA and spatio-temporal analysis. Then, we are capable of visualizing spatial patterns from 2007 to 2009 as a macro analysis. Following that, we explored the effect on carbon point system through Ex ante-Ex post Analysis by paired t-test. To conclude, we can spatially identify the distribution with a significant difference between carbon emissions according to energy use as a micro analysis by Hot Spot to Analysis on point entities. It is to be hoped that this method will be utilized to establish various policies and to evaluate the effect of reduction of GHG.