DOI QR코드

DOI QR Code

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe

유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석

  • Received : 2022.03.14
  • Accepted : 2022.03.31
  • Published : 2022.06.30

Abstract

This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.

본 연구는 유럽지역 내 20개 연결계통국가들을 대상으로 2000년부터 2014년까지의 패널 자료를 구성하여 유럽이 2005년에 도입한 배출권거래시장을 기점으로 표본기간을 전과 후로 나누어 탄소배출량 결정요인을 이분산과 자기상관의 문제를 고려한 패널 GLS 방법으로 추정하였다. 종속변수로는 개별국가들에서의 탄소배출량이 사용되었으며, 설명변수로는 발전원별 발전량 비중, 이웃 국가들의 전력수급률, 자원보유국의 전력생산량, 발전원집중도, 산업부문에서의 1인당 총에너지 사용량, 전력가격에서의 세금, 1인당 전력 순수출량, 1인당 국토면적의 크기 등이 사용되었다. 추정결과에 의하면, 2005년을 기점으로 전과 후 모두에서 원전과 재생에너지 발전량 비중, 발전원집중도, 1인당 국토면적의 크기 등은 탄소배출량에 음(-)의 영향을 미치는 것으로 나타난 반면 석탄 발전량 비중, 이웃 국가들의 전력수급률, 자원보유국의 전력생산량, 산업부문에서의 1인당 총에너지 사용량 등은 탄소배출량에 양(+)의 영향을 미치는 것으로 나타났다. 이외 가스 발전량 비중과 전력가격에서의 세금은 2005년 이전에 대해서만 각각 탄소배출량에 음(-)과 양(+)의 영향을 미쳤으며, 1인당 전력 순수출량은 2005년 이후에 대해서만 탄소배출량에 음(-)의 영향을 미치는 것으로 나타났다. 본 연구의 결과는 저탄소 녹색성장으로의 탄소배출량 절감을 위한 거시적인 대응전략을 제시하며 전력교역시장을 고려한 중장기 전원믹스 최적화 방안과 그 역할에 대한 의미와 가치를 시사하고 있다.

Keywords

References

  1. 민인식.최필선, 「패널데이터분석STATA」, 한국STATA학회, 2016a, pp. 79~99.
  2. 민인식.최필선, 「기초통계와 회귀분석」, 한국STATA학회, 2016b, pp. 58~185.
  3. 박완규.홍성표, 「Gujarati의 계량경제학(개정5판)」, MC Graw-Hill Korea, 2009, pp. 393~397.
  4. 윤경수, "탄소배출권 거래제 도입과 탄소배출량을 고려한 유럽의 국가 간 전력교역 결정요인 분석", 박사학위논문, 숭실대학교, 2021.2.
  5. 윤경수.박창수.조성봉, "유럽의 탄소배출권 거래시장 도입에 따른 연결계통국가들의 전력 순수출 결정요인 변화 분석", 「자원.환경경제연구」, 제28권 제3호, 2019, pp. 385~413.
  6. 전력거래소, "2017년 해외 전력산업 동향(유럽연합)", 2017.11.
  7. 홍원준.이지훈.노주만.조홍종, "공간계량방법론을 활용한 유럽 전력 수출입 결정요인 분석", 「자원.환경경제연구」, 제30권 제3호, 2019, pp. 435~469.
  8. Aboumahboub, T., K. Schaber, P. Tzscheutschler, and T. Hamacher, "Optimization of the utilization of renewable energy sources in the electricity sector," Recent Advances in Energy & Environment, 2010, pp. 196~204.
  9. Ahamada, I., and D. Kirat, "The Impact of Phases II of the EU ETS on Wholesale Electricity Prices," Revue d'economie politique, Vol. 125, 2015, pp. 887~908. https://doi.org/10.3917/redp.256.0887
  10. Amor, M. B., P. Pineau, C. Gaudreault, and R. Samson, "Electricity trade and GHG emissions: Assessment of Quebec's hydropower in the Northeastern American market (2006-2008)," Energy Policy, Vol. 39, 2011, pp. 1711~1721. https://doi.org/10.1016/j.enpol.2011.01.001
  11. Bowen, B. H., F. T. Sparrow, and Z. Yu, "Modeling electricity trade policy for the twelve nations of the Southern African Power Pool (SAPP)," Utilities Policy, Vol. 8, No. 3, 1999, pp. 183~197. https://doi.org/10.1016/S0957-1787(99)00019-3
  12. BP, Stats Review 2005 Full Report, (2005-2016).
  13. BP, Statistical Review of World Energy, 2021.
  14. Child, M., C. Kemfert, D. Bogdanov, and C. Breyer, "Flexible electricity generation, gird exchange and storagefor the transition to a 100% renewable energy system in Europe," Renewable Energy, Vol. 139, 2019, pp. 80~101. https://doi.org/10.1016/j.renene.2019.02.077
  15. Delarue, D., K. Voorspools, and W. D'haeseleer, "Fuel Switching in the Electricity Sector under the EU ETS:Review and Prospective," Journal of Energy Engineering, Vol. 134, No. 2, 2008, pp. 40~46. https://doi.org/10.1061/(ASCE)0733-9402(2008)134:2(40)
  16. EU EUROSTAT, https://ec.europa.eu/eurostat/data/database
  17. European Union, https://europa.eu/european-union/about-eu/countries_en#28members (2019)
  18. Fichaux, N., and J. Wilkes, Oceans of Opportunity : Harnessing Europe's largest domestic energy resource, EWEA(European Wind Energy Association), 2009.
  19. Fuller, R. B., The world game: integrative resource utilization planning tool, Southern Illinois University in Carbondale, 1971.
  20. Global Carbon Atlas : http://www.globalcarbonatlas.org/(2022)
  21. Gnansounou, E., H. Bayem, D. Bednyagin, and J. Dong, "Strategies for regional integration of electricity supply in West Africa," Energy Policy, Vol. 35, 2007, pp. 4142~4153. https://doi.org/10.1016/j.enpol.2007.02.023
  22. Greenpeace and 3E, A north sea Electricity Grid[R]evolution: Electricity Output of Interconnected Offshore Wind Power: A vision of Offshore Wind Power Integration, Greenpeace, 2008.
  23. Heide, D., L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, and S. Bofinger, "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Vol. 35, No. 11, 2010, pp. 2483~2489. https://doi.org/10.1016/j.renene.2010.03.012
  24. IEA, 'Electricity Information: Overview (2018 Edition)'
  25. IEA, 'Key World Energy Statistics 2018'
  26. IEA, 'World Energy Balances 2018'
  27. Laing, T., Misato Sato, Michael Grubb, Claudia Comberti, "The effects and side-effects of the EU emissions trading scheme," WIREs Climate Change, Vol. 5, 2014, pp. 509~519. https://doi.org/10.1002/wcc.283
  28. Newbery, D., G. Strbac, G. Pudjianto, and P. Noel, Benefits Of An Integrated European Energy Market, Booz&co, 2014.
  29. Newbery, D., M. G. Pollitt, R. A. Ritz, and W. Strielkowski, "Market design for a high- renewables European electricity system," Renewable and Sustainable Energy Review, Vol. 91, 2018, pp. 695~707. https://doi.org/10.1016/j.rser.2018.04.025
  30. Ochoa, C., and A. van Ackere, "Winners and losers of market coupling," Energy, Vol. 80, 2015, pp. 522~534. https://doi.org/10.1016/j.energy.2014.11.088
  31. OECD, https://www.oecd.org/about/members-and-partners/ (2019)
  32. Pineau, P. O., A. Hira, and K. Froschauer, "Measuring international electricity integration: a comparative study of the power systems under the Nordic Council, MERCOSUR, and NAFTA," Energy Policy, Vol. 32, No. 13, 2004, pp. 1457~1475. https://doi.org/10.1016/S0301-4215(03)00111-3
  33. Qu, S., Y. Li, S. Liang, J. Yuan, and M. Xu, "Virtual CO2 Emission Flows in the Global Electricity Trade Network," Environmental Science & Technology, Vol. 52, 2018, pp. 6666~6675. https://doi.org/10.1021/acs.est.7b05191
  34. Rogers, J. S., and J. G. Rowse, "Canadian interregional electricity trade: Analysing the gains from system integration during 1990-2020," Energy Economics, Vol. 11, No. 2, 1989, pp. 105~118. https://doi.org/10.1016/0140-9883(89)90003-0
  35. Schaber, K., F. Steinke, and T. Hamacher, "Transmission grid extensions for the integration of variablerenewable energies in Europe: Who benefits where?," Energy Policy, Vol. 43, 2012, pp. 123~135. https://doi.org/10.1016/j.enpol.2011.12.040
  36. Wang, H., W. Wang, S. Liang, C. Zhang, S. Qu, Y. Liang, Y. Li, M. Xu, and aZ. Yang, "Determinants of Greenhouse Gas Emissions from Interconnected Grids in China," Environmental Science & Technology, Vol. 53, 2019, pp. 1432~1440. https://doi.org/10.1021/acs.est.8b06516
  37. Yu, X., "Regional cooperation and energy development in the Greater Mekong Subregion," Energy Policy, Vol. 31, No. 12, 2003, pp. 1221~1234. https://doi.org/10.1016/S0301-4215(02)00182-9
  38. Zakeri, B., J. Price, M. Zeyringer, I. Keppo, B. Mathiesen, and S. Syri, "The direct interconnection of the UK and nordic power market," Energy, Vol. 162, 2018, pp. 1193~1204. https://doi.org/10.1016/j.energy.2018.08.019