• Title/Summary/Keyword: 탄소폼

Search Result 56, Processing Time 0.02 seconds

The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template (카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성)

  • Lee, Sangmin;Kim, Ji-Hyun;Jeong, Euigyung;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.268-273
    • /
    • 2016
  • To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of $0.22{\pm}0.05MPa$ with the highest bulk density of $0.44g/cm^3$ when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing ($d_{002}$) with the addition of CB in carbon foams.

추진기관 노즐용 Needle Punch 탄소/탄소 복합재료 제조

  • Jo, Dae-Hyeon;Jo, Chae-Uk;Lee, Jong-Mun;Gu, Hyeong-Hoe;Lee, Jae-Yeol;Yun, Nam-Gyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.467-470
    • /
    • 2008
  • 추진기관용 노즐에 사용하는 대표적인 소재로는 흑연소재와 탄소/탄소 복합재료를 들 수 있다. 흑연 소재는 열충격 저항성이 취약하여 사용 중 파손의 발생가능성이 높아 현재는 열축격 저항성이 우수한 탄소/탄소 복합재료를 주로 사용하고 있다. 본 연구를 통하여 수입에 의존하였던 Quasi-3D 구조의 니들펀치(Needle Punch) 프리폼을 국산화 개발하였다. 본 연구에서는 니들펀치 프리폼의 제조 공정 및 밀도화 공정을 다루고자 한다.

  • PDF

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon (야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.157-164
    • /
    • 2021
  • Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.

Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures (프리폼 구조에 따른 4방향성 탄소/탄소 복합재의 열물리적 특성)

  • Kim, Zeong-Baek;Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.580-586
    • /
    • 2007
  • In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at $2300^{\circ}C$. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.

Effects of the Gas Flow Inside a CVI Reactor on the Densification of a C/C Composite (화학기상침투법 반응로 내부 유동에 따른 탄소/탄소 복합재 밀도화)

  • Kim, Hye-gyu;Ji, Wooseok;Kwon, Hyang Joo;Yoon, Sungtae;Kim, Jung-il
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.249-256
    • /
    • 2021
  • In this paper, the densification of a carbon/carbon composite during a chemical vapor infiltration (CVI) process is studied using a chemo-mechanical model. The multi-physics numerical model, developed in the previous research, couples computational fluid dynamics and major chemical reactions in the reactor. The model is especially utilized to study the effect of flow behavior around the preform on the densification. Four different types of "flow-guide" structures are placed to alter the gas flow around the preform. It is shown that the flow pattern and speed around the preform can be controlled by the guide structures. The process simulations demonstrate that the average density and/or density distribution of the preform can be improved by controlling the gas flow around the perform. In this study, a full industrial-scale reactor and process parameter were used.

Study on Heavy Metal Desorption and Recovery of the Carbon Foam used in Industrial Plating Wastewater Treatment as Adsorbent (산업도금폐수 처리에 사용된 탄소폼 흡착소재의 중금속 탈착 및 회수에 관한 연구)

  • Lee, Da-Young;Lee, Chang-Gu;Kim, Dae-Woon;Park, Sang-Hyen;Kweon, Ji-Hyang;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.627-634
    • /
    • 2016
  • We investigated the characteristics of heavy metal desorption and recovery from carbon foam after plating wastewater treatment. The heavy metal desorption depends on solution chemistry because desorption occurred in HCl and $H_2SO_4 $ solution but did not occur in distilled water. Heavy metal desorption efficiency was increased using ultrasonication with desorption solution. The higher ultrasonic power and the longer reaction time improve efficiency. The copper plating rinse solution was treated reliably by carbon foam adsorbent during 200 bed volume. The adsorbed copper was dissolved using desorption solution and recovered by DC power supply. After copper recovery, the reuse efficiency of desorption solution was 84.2%.

Numerical Simulation of Diffusion and Flow in Fabrication of Carbon/Carbon Composite Using Chemical Vapor Infiltration (다단계 화학반응과 밀도화 모델을 이용한 탄소/탄소 복합재 화학기상침투 공정의 확산 및 유동 수치해석)

  • Kim, Hye-gyu;Ji, Wooseok;Jo, Namchun;Park, Jonggyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.56-64
    • /
    • 2019
  • In this paper, a model is developed to simulate carbon/carbon composite fabrication using chemical vapor infiltration, considering density and porosity change in the preform and multi-step hydrocarbons reactions. The model considers the preform as a porous medium whose diffusion and flow properties changes due to the porosity. To verify the theoretical model, two numerical analyses were performed for the case that the flow inside the preform is zero and the case that the flow inside the preform is calculated by fluid mechanics. The numerical results showed good agreement with the experimental data.

Effects of Electron Donor and Electron Acceptor on Biodegradation of $CCl_4$ (Electron Donor와 Electron Acceptor의 농도가 사염화탄소의 생물분해에 미치는 영향)

  • 배우근
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1991.05a
    • /
    • pp.8-12
    • /
    • 1991
  • Biodegradation of carbon tetrachloride (CTC) in denitrifying and aerobic columns was investigated under various conditions of electron-acceptor and electron-donor availability. CTC removal increased when the electron-acceptor (nitrate) injection was stopped in the denitrifying column ; however, CTC removal decreased when electron donor (acetate) was deleted in the denitrifying and the aerobic column. Small fractions of the CTC removed appeared as chloroform, indicating that reductive dechlorination of CTC was occurring. The results from the denitrifying column support the hypothesis that CTC behave as an electron acceptor that competes for the pool of available electrons inside the bacterial cells.

  • PDF