• Title/Summary/Keyword: 탄소섬유 복합재

Search Result 307, Processing Time 0.024 seconds

Friction and Wear Properties of Fiber Reinforced Composite (섬유보강 복합재의 마찰 및 마모특성)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok;Hong, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.733-740
    • /
    • 1994
  • Oxidized-PAN fiber reinforced composite(OFRP), carbon fiber reinforced composite(CFRP), aramid fiber reinforced composite(AFRP), and glass fiber reinforced composite(GFRP) were fabricated with phenolic resin matrix by hot press molding. We tested the friction coefficient and wear rate varying with fiber weight fraction and observed the effect of fibers according to characteristics of individual reinforcement. When the amount of aramid fiber was 45wt%, average friction coefficient was maximum value of 0.353~0.383, where as, when the amount of pitch based carbon fiber was 45wt%, average friction coefficient was the lowest value of 0.164~0.190. The wear rate of AFRP and CFRP was low, but that of GFRP and OFRP increases drastically in the case of increasing of fiber weight fraction. Wear diagram of OFRP was unstable, but that of CFRP and AFRP was a bit stable. Through very unstable diagram of GFRP, we found that friction stability of GFRP was the lowest.

  • PDF

Effects of fiber forms on thermal anisotropy in fibrous composites (섬유강화 복합재의 열이방성에 대한 섬유 형태적 영향)

  • Sim, Hwan-Bo;Lee, Bo-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 1995
  • Anisotropic pitch-based C-type and hollow carbon fibers can obtain wider shear stresses during the spinning and induce higher molecular orientation than that of round along the fiber axis. These fibers reinforced unidirectional epoxy composites were prepared by hot-press moulding method and perpendicular and parallel thermal conductivities of the composites were measured by a steady-state meth od. In the case of round carbon fibers reinforced epoxy composites(H-CF/EP), thermal anisotropic factor showed nearly 50, while those of H-CF/EP and C-CF/EP showed about 130 and 118, respectively. As a result, both H-CF/EP and C-CF/EP had an excellent directional thermal conductivity to distribute heat, above 200 %.

  • PDF

Failure Behavior of Pin-jointed Carbon/Epoxy Composites using Acoustic Emission (음향방출법을 이용한 탄소섬유/에폭시 복합재의 핀 체결부 파괴거동)

  • Kim, Chan-Gyu;Hwang, Young-Eun;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.520-522
    • /
    • 2011
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test. The composites were fabricated by a filament winding process, and two types of laminated patterns were considered. According to the results, type 1 pattern revealed a net-tension failure mode, whereas type 2 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the type 2 pattern was higher than that of the type 1 pattern. Therefore, the type 2 pattern was found to be structurally safer than the type 1 pattern.

  • PDF

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

Mixed Mode Interlaminar Fracture Behaviors of Carbon Fabric/Epoxy Composites (탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴 거동)

  • Yoon, Sung-Ho;Heo, Kwang-Soo;Oh, Jin-Oh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • Mixed mode interlaminar fracture behaviors of carbon fabric/epoxy composites were investigated through MMF (Mixed Mode Flexural) test by varying mixed mode ratio ranging from 20% to 90%. Mixed mode interlaminar fracture criteria based on NL point and 5% offset point were also suggested in order to predict mixed mode interlaminar fracture behaviors. Fracture surfaces and crack propagating behaviors were examined through a travelling scope and a scanning electron microscope. According to the results, mixed mode interlaminar fracture behaviors can be predicted by mixed mode interlaminar fracture criterion with m=1.5 and n=0.5 on the basis of NL point or mixed mode interlaminar fracture criterion with m=2 and n=3 on the basis of 5% offset point. Fracture surfaces and crack propagating behaviors are sensitive to mixed mode ratios. MMF test can be successfully applicable in evaluating mixed mode interlaminar fracture toughness of carbon fabric/epoxy composites.

Experimental Investigation on Relationship of Winding Process Variables and Mechanical Properties for Filament Wound Composites (필라멘트와인딩 복합재의 기계적 특성과 와인딩시 공정변수와의 관계에 대한 실험적 고찰)

  • 윤성호;김준영;황태경
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.56-65
    • /
    • 1999
  • The relationship of the winding process variables and the mechanical properties of filament wound composites is investigated experimentally. The winding process variables considered are the fiber tensions and the fiber ends. The filament wound ring specimens are fabricated using 3-axis controlled filament winding machine. Two types of carbon fibers, TZ-507 and IZ-40, are used as reinforcements and epoxy for filament winding is used as resin. During the winding process, the fiber tensions are varied from 0.5kgf to 3.0kgf, and the number of the fiber ends are varied from 1 to 6. The fiber volume fractions and the void contents for the ring specimens are measured through the resin digestion. The mechanical properties of the ring specimens are also evaluated by the split disk test. The test results show that the winding process variables affect the fiber volume fractions and the void contents of the ring specimens, which result in the variation of the tensile properties of the ring specimens. Therefore, suitable winding process variables should be applied to maximize the structural performance and the productivity for filament wound structures.

  • PDF

Ablation Characteristics of 4D-Carbon/Carbon Composites (4D-탄소/탄소 복합재료의 삭마특성)

  • Park, In-Seo;O, In-Seok;Ju, Hyeok-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.687-693
    • /
    • 1997
  • 4방향성(4D)탄소섬유 프리폼을 각각 polyfurfury1 alcohol과 석탄계 핏치로 함침하는 방법과 CVI방법에 의하여 열분해 탄소로 증착하는 방법을 채택하여 4방향성 탄소/탄소 복합재를 제작하였다. 아크플라즈마 토치 및 지상연소 시험에 의하여 이들의 삭마특성을 비교 관찰하였다. 4D 탄소/탄소 복합재의 기공도는 밀도가 증가할 수록 감소하였으며, 고밀도화된 시편일 수록 삭마저항성이 우수하게 나타났다. CVI-핏치계 4D 탄소/탄소 복합재가 내삭마 성능이 가장 우수하였다. 삭마거동은 결합재의 종류와 복합재의 밀도 및 기공도에 크게 의존함을 알 수 있었다.

  • PDF

Flexural Strengthening Effect on R.C Beam with Structural Damage (구조적 손상을 입은 R.C보의 휨보강 효과)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • The Rehabilitation and repair of structurally deteriorated, reinforced concrete structures will be highly demanded in the near future. The purpose of this study is to investigate whether damaged beams that crack and deflection are developed by bending moment are restored to the former state. In conclusion, when specimens strengthened with Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid(Carbon Fiber Reinforced Plastic-Grid) are compared with standard specimen, flexural capacity is increased and ductility and energy absorbtion capacity are similar with undamaged specimen. Therefore Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid (Carbon Fiber Reinforced Plastic-Grid) have highly efficiency as material of flexural strengthening.