• Title/Summary/Keyword: 탄소섬유 강화 복합재

Search Result 138, Processing Time 0.031 seconds

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

A Study on Characteristics of Impact Fracture in CFRP Laminate Plates (탄소섬유강화 복합재 적층판의 충격파괴 특성에 관한 연구)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.38-46
    • /
    • 1995
  • In this paper, an experimental study on the effects of the impact damage and the perforation characteristic of CFRP laminates with different fiber stacking orientation and ply number was done through an observation of interrelations between the impact energy vs. transmitted energy and the impact energy vs. absorbed energy per unit volume. The velocities of the ball before or after impact are measured by the high-speed camera. And when CFRP laminates are subjected to tranverse impact by a steel ball(${\phi}10$), the delamination shapes generated by impact damage are observed by using SAM (Scanning acoustic Microscope).

  • PDF

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite (에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성)

  • Youe, Won-Jae;Lee, Soo-Min;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.406-414
    • /
    • 2016
  • The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

Study on Evaluation of Carbon Fiber Reinforced Composite Groove Using Inverse Ballistics Technology (역탄도 기법을 이용한 탄소섬유/열경화성수지 복합재 그루브의 파단 특성 연구)

  • 최재호;박인서;송흥섭;박관진
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.15-20
    • /
    • 2004
  • It is a primary object of the present study to test and evaluate the shear load carrying capability of a carbon fiber reinforced thermoses composite structure with buttress grooves for military applications. The buttress form of groove is an effective structure in any applications where high shear loads are transferred in one direction between structural components. Inverse ballistics methodology was introduced to investigate the high strain rate properties of composite groove specimens. In comparison with the conventional methods, inverse ballistics technique is a proper one under dynamic environment.

Evaluation of Variation in Residual Strength of Carbon Fiber Reinforced Plastic Plate with a Hole Subjected to Fatigue Load (피로하중에 의한 홀 노치 탄소섬유강화 복합재의 잔류강도변화 평가)

  • Kim, Sang-Young;Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1411-1417
    • /
    • 2010
  • CFRP (Carbon Fiber Reinforced Plastic) has received considerable attention in various fields as a structural material, because of its high specific strength, high specific stiffness, excellent design flexibility, favorable chemical properties, etc. Most products consisting of several parts are generally assembled by mechanical joining methods (using rivets, bolts, pins, etc.). Holes must be drilled in the parts to be joined, and the strength of the components subjected to static and fatigue loads caused by stress concentration must be decreased. In this study, we experimentally evaluated the variation in the residual strength of a holenotched CFRP plate subjected to fatigue load. We repeatedly subjected the hole-notched specimen to fatigue load for a certain number of cycles, and then we investigated the residual strength of the hole-notched specimen by performing the fracture test. From the results of the test, we can observe the initiation of a directional crack caused by the applied fatigue load. Further, we observed that the residual strength increases with a decrease in the notch effect due to this crack. It was evaluated that the residual strength increases to a certain level and subsequently decreases. This variation in the residual strength was represented by a simple equation by using a model of the decrease in residual strength for plain plate, which was developed by Reifsnider and a stress redistribution model for hole-notched plate, which was developed by Yip.

Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type (나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가)

  • Jun Ha Park;Soon Ho Yoon;Minkook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.186-189
    • /
    • 2024
  • This study compared and evaluated the mechanical properties of carbon fiber reinforced thermoplastic polymer (CFRTP) mixed with nanofillers. After mixing various nanofillers such as Multi-wall carbon nanotube (MWCNT), Silicon oxide, Core shell rubber, and Aramid nanofiber with Polyamide 6 (PA6) resin, this is used as a matrix to create a carbon fiber reinforced composite material (CFRP) was manufactured and its physical properties were measured. Depending on the type and mixing ratio of nanofiller, tensile strength, inter-laminar shear strength (ILSS), and Izod impact strength were measured. In terms of tensile strength and impact strength, the highest values were obtained when mixing core shell rubber, however the ILSS was optimal when mixing less than 1 wt.% of silicon oxide.