• Title/Summary/Keyword: 탄소섬유판

Search Result 177, Processing Time 0.031 seconds

A Study on the Improvement Buckling Strength of Laminated Composite Plate by Taguchi Method (다구찌법을 이용한 복합적층판의 좌굴강도 개선에 관한 연구)

  • 구경민;홍도관;김동영;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1362-1365
    • /
    • 2003
  • On this study. we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized buckling strength of CFRP laminated composite plate without a hole and with a hole by each aspect ratio. In the case of CFRP laminated composite plate without a hole, we confirmed the reliance and efficiency of algorithm in comparison with the result optimization achievement repeatedly using statistical orthogonal array of experimental design.

  • PDF

A Study on the Vibration Characteristics of Laminated Composite Materials Rectangular Plates (적층 복합재료 사각판의 진동특성에 관한 연구)

  • 허동현;신귀수;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.486-490
    • /
    • 1997
  • Composite materials have varios complicated characteristics to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtined is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor (다자유도 탄소섬유판 힘/토크 센서 개발)

  • Lee, Dong-Hyeok;Kim, Min-Gyu;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a ${\mu}N$ level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 kg (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.

Earthquake-Resistant Capacity of RC Columns Retrofitted by Fiber-Steel Composite Plate (복합판으로 보강된 철근콘크리트 기둥의 내진성능연구)

  • Park Tae-Man;Park Seong-Min;Hong Hyeok-Jun;Kang Gyeong-Soo;Yoon Jeong-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.113-120
    • /
    • 2005
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted by steel-fiber composite plate. Test specimens strengthened by three different materials - steel plate(SP), carbon fiber sheet(CF) and fiber-steel composite plate(CP) - were tested under cyclic lateral load with a constant axial load equal to $20\%$ of the axial compression capacity. The structural capacity of composite plate was good or better than that of other retrofitting materials. Test results from all retrofitted specimens showed that considerably higher retrofitting amount was required for strength enhancement. The ductility of retrofitted columns by composite plate was fairly improved. Also, energy ductility ratio was more effective than displacement ductility ratio for ductility estimation of retrofitted column.

Experimental and Analytical Study on the Steel Beam bonded with CFRP Strip (레진으로 접착 보강한 강재보의 거동)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • In this paper, the behaviour of composite steel-CFRP members is studied experimentally and using FE-analysis. The use of advance composite materials in construction for repair and rehabilitation has become a frequent used method in the last decade. FRP composites have many advantages over the traditional technique of steel bonding for a number of reasons: 1. Composites add little or no additional weight to a building, eliminating the need for costly foundation strengthening. 2. FRP composites are very thin (1.2mm to 1.4mm). So there is no loss of floor space and negligible effect over the architectural aspect. 3. FRP composites do not corrode, this makes it long lasting. However, the method is yet to become a mainstream application due to a number of economical and design related issues. Brittle debonding failure, aging effect on bonding, broad based awareness and proper design guidelines are the main concern for future research works. This paper is focused on the ultimate load carrying capacity of the CFRP-strengthened beams and their effect on the deflection and failures modes by varying the amount of CFRP content.

Experiments on the Detection of Delamination in FRP Reinforced Concrete (탄소섬유 보강 콘크리트의 박리 탐사 실험)

  • Rhim, Hong-Chul;Jung, Hang-Chul;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques, microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymers (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in the measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with hom antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding between concrete and FRP. Also, ultrasonic method is used for the same condition. Both results are compared with each other.

Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin (탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가)

  • Park, Joo-Eon;Gu, Ja-Uk;Kang, Soo-Keun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Interfacial shear strength between epoxy and carbon fiber was analyzed utilizing a hemi-spherical microbond specimens adhered onto single carbon fiber. The hemi-spherical microbond specimen showed high regression coefficient and small standard deviation in the measurement of interfacial strength as compared with a droplet and an inverse hemi-spherical one. This seemed to be caused by the reduced meniscus effects and the reduced stress concentration In the region contacting with a pin-hole loading device. Finite element analysis showed that the stress distributions along the fiber/matrix interface in the hemi-spherical specimen had a stable shear stress distribution along the interface without any stress mode change. The experimental data was also different according to the kinds of loading device such as the microvise-tip and the pin-holed plate.