• Title/Summary/Keyword: 탄소섬유부착공법

Search Result 34, Processing Time 0.018 seconds

A Study on the Behavior of the Adhesive Failure of RC Beams Strengthened by Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 부착파괴거동에 관한 실험적 연구)

  • 박칠림;황진석;박형철;백명종
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.157-164
    • /
    • 1997
  • 최근 손상된 구조물에 탄소섬유쉬트 보강공법이 많이 사용되고 있다. 탄소섬유쉬트 보강에 따른 휨내력의 증진이 이루어지기 위해서는 보와 탄소섬유쉬트의 일체거동이 이루어져야 하며, 쉬트단부에서 부착파괴가 발생하지 않아야 한다. 따라서 이번 실험에서는 탄소섬유쉬트의 보강매수에 따른 부착파괴의 거동을 살펴보았다. 전시험체에서 부착파괴가 발생하였으며 부착파괴가 발생한 하중의 크기는 보강매수에 관계없이 비슷하였다. 부착파괴의 거동은 순수부착파괴와 피복박리파괴로 구분될 수 있었으며 부착응력은 단부에서 집중현상이 나타났고 집중된 응력의 크기는 15.39~41.42kg/$\textrm{cm}^2$로 나타났다. 정착길이내의 평균부착응력은 6.85~8.99kg/$\textrm{cm}^2$으로서 평균 7.38kg/$\textrm{cm}^2$이고 이 값은 이론치인 6.19kg/$\textrm{cm}^2$보다 약간 높으며 설계부착응력인 6kg/$\textrm{cm}^2$에 부합되는 것으로 나타났다. 따라서 설계부착응력 6kg/$\textrm{cm}^2$은 정착길이의 설계시 합리적 값으로 평가되었다.

A Study for Structural Behavior of R./C beams Strengthened with New Bonding Methods (보강재의 변형 부착에 따른 보의 구조적 거동)

  • 한만엽;송병표
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 1998
  • 최근들어 손상된 실구조물의 보강공법들이 적용,발전되어왔다. 가장 보편적으로 사용된공법이 강판과 탄소섬유를 이용한 공법이지만, 이론적인 배경과 적용기술이 아직은 정립되어었지 않은 상태이다. 강판보강의 경우 단부에서의 응력집중이 보강 효과를 결정짓는 가장 중요한 변수이므로, 본 연구에서는 이러한 응력집중을 완화하기 위하여 단부에 보강판과확대판을 부착하여 실험을 하였고, 탄소섬유 보강 실험에서는 다층 시공시 보강량을 조절하여 실험하였다. 실험 결과는 하중-처짐, 항복하중, 최대하중, 보강재의 전단응력의 분포와 보강재의 파괴양상을 분류하여 정리하였다. 실험을 통하여 강판 보강의 경우 본 연구에서 제안된 단부에서의 보강방법이 보강효과가 향상된 것을 확인하였고 탄소섬유 보강시에는 탄소섬유의 보강량을 조절함으로써 경제적인 설계와 시공이 가능한 것으로 나타났다.

Bond-Slip Model of Interface between CFRP Sheets and Concrete Beams Strengthened with CFRP (탄소섬유시트로 보강된 콘크리트보의 경계면 부착-슬립모델)

  • Kim, Sung-Bae;Kim, Jang-Ho Tay;Nam, Jin-Won;Kang, Suk-Hwa;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.477-486
    • /
    • 2008
  • External bonding of carbon fiber reinforced plastic sheets has recently emerged as a popular method for strengthening reinforced concrete structures. The behavior of CFRP-strengthened RC structure is often controlled by the behavior of the interface between CFRP sheets and concrete. In this study, a review of models on bond strength, bond-slip, and interfacial stresses has been first carried out. Then a new bond-slip model is proposed. The proposed bond-slip model has bilinear ascending regions and exponential descending region derived from modifications mode on the conventional bilinear bond-slip model. The comparison of the results with those of existing experiment researches on bond-slip models indicate good agreements.

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with NSM and EBR CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 RC보의 휨 거동에 관한 실험 연구)

  • Lim, Dong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.601-609
    • /
    • 2008
  • The purpose of this study is to investigate the flexural strengthening effectiveness for the beams combined reinforced with NSM CFRP strips and EBR CFRP strips. To accomplish this objective, a total of nine concrete T beams were tested. From this study, it is found that the flexural stiffness and strength of the beams combined reinforced with NSM and EBR strips were significantly improved compared to the beams strengthened only with NSM CFRP strip. The maximum increase of flexural strength was 347% compared to the beam without CFRP strip. Failure of the beam combined reinforced with NSM and EBR strips (T shape) is initiated by debonding of EBR strips attached on the bottom face, and it was succeeded a part of separatio-n of NSM strips along the longitudinal direction and secondly failure of NSM strips was occurred, eventually sudden explosive failure with the separation of concrete cover in the shear region. This result shows that the NSM and EBR strips have good combination to resist applied load and the combined reinforcement with NSM and EBR strips can redistribute appropriately the total stress subjected concrete beam to the EBR and NSM strips.

Experimental Study on Bond Behavior of Retrofit Materials by Bond-Shear Test (부착전단 실험에 의한 보강재료의 부착거동 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Cho, Yun-Gu;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • A variety of retrofit material such as CFRP, GFRP, and PolyUrea have been developed for strengthening RC structures and infrastructures. From previously reported research results, the capacity of strengthened concrete structures was dictated by the behavior of the interface between retrofit material and concrete. In this study, bond-shear test was carried out to estimate the bond behavior between retrofit material and concrete using a newly developed test grip. The test results of load and slip relation and energy absorption capacity of each retrofit material were obtained. These test results will provide basic information for retrofit material selection to achieve target retrofit performance.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

An Experimental Study of Flexural Strengthening Method of Reinforced Concrete Beams with Near Surface Mounted CFRP Strips (탄소섬유판 (CFRP) 표면매립 (NSM) 공법을 이용한 콘크리트 구조물 휨 보강에 관한 실험 연구)

  • Lim, Dong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.131-136
    • /
    • 2013
  • The purpose of this study is to establish the flexural strengthening method of the concrete members. To accomplish this objective, a total of seven concrete beams were tested. From this study, it is found that the initial flexural stiffness and strength of the beams reinforced with NSM CFRP strips were significantly improved compared to the beam without CFRP strip. Failure of the beam reinforced with NSM strips is initiated by failure of NSM strips, eventually sudden explosive compressive failure in the loaded region. This strengthening method combined with NSM CFRP strips and high performance mortar for concrete cover recovery is evaluated by a good strengthening method for the strength, durability and good appearance of concrete structures.

A Study for Creep Effect of the Interfacial Adhesive Layer on the Behavior of Concrete with CFRP (탄소섬유시트로 보강된 콘크리트 구조물 경계면 재료의 크리프 영향 해석)

  • Park, Yong Deuk;Shin, Seung Kyo;Kang, Suk Hwa;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.221-228
    • /
    • 2010
  • External bonding of carbon fiber reinforced polymer (CFRP) sheets has been widely accepted as a popular method for strengthening of deteriorated RC structures. The long-term behavior of CFRP-strengthened RC structure is often affected by that of the interface between CFRP sheets and concrete. This study aims at applying a viscoelastic model to describe the creep behaviour of the adhesive layer bonding CFRP sheet to concrete, the CFRP-concrete interface. Reviews of available models on concrete creep behavior have been first carried out and then new FE analysis model is proposed. The proposed FE analysis model based on the maxwell model has been verified by previous experimental results. It is shown that the creep effect of interfacial adhesive layer is very important on the long-term behavior of concrete structures strengthened with CFRP.