• Title/Summary/Keyword: 탄소섬유복합수지

Search Result 122, Processing Time 0.019 seconds

DGEBA-MDA-SN-Hydroxyl Group System and Composites : 2. Fracture Energy of Fiber Reinforced Composites (DGEBA-MDA-SN-Hydroxyl Group System의 합성 및 복합재료 제조 : 2. 섬유강화 복합재료의 파괴에너지)

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.737-742
    • /
    • 1994
  • The fracture energy of glass fiber/carbon fiber/epoxy resin hybrid composite system was investigated in the aspect of fracture mechanism. Epoxy resin matrix was DGEBA-MDA-SN-HQ system. On the interface of glass fiber and matrix, post debone friction energy provided a major contribution to the fracture energy, and debonding energy and pull-out energy were of the similar value. In the case of fracture on the interface of carbon fiber and matrix, pull-out energy was the major contributor.

  • PDF

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

A Study on the Bonding Process of Carbon Fiber-Thermoplastic Composite Using Induction Heating Technology (유도가열 기술을 이용한 탄소섬유-열가소성 복합재의 접합 공정에 관한 연구)

  • Kang, Chang-Soo;Yoo, Myeong-Han;Seo, Min-Kang;Choi, Bo-Kyung
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.421-425
    • /
    • 2021
  • In this study, thermoplastic composites were manufactured using a thermoplastic resin (PEEK) with the same melting temperature and a highly heat-resistant carbon UD tapes with different carbon fibers (Type A, Type B). And the bonding characteristics and mechanical characteristics of each of the two produced thermoplastic composites by induction heating welding were examined. The bonding characteristics and mechanical characteristics of the thermoplastic composites were performed using C-Scan and B-Scan, which is a non-destructive inspection, and the single lap shear test, respectively. The temperature of the carbon composites surface was monitored using a thermal image camera.

Effect of Boron Nitride on Mechanical Properties, Thermal and Electrical Conductivities of Carbon Fiber Reinforced Plastics (탄소섬유강화 복합소재의 열적, 전기적, 기계적 특성에 대한 질화붕소 첨가제의 효과)

  • Hong, Hyunkee;Bae, Kwak Jin;Yu, Jaesang
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, hexagonal boron nitride (h-BN) particles were added between the sheets of prepreg, and the effect of on many properties of BN-embedded carbon fiber reinforced plastics was investigated. The amount of BN particles which corresponds with 0 to 15 wt% of total resin weight was used as an additive material. The tensile strength and the inter-laminar shear strength of BN-embedded CFRP samples were improved by maximally 13.6%, and 6.7%, respectively. The tendency changes of thermal, electrical conductivities and the morphology of cross-section of CFRPs were also observed. This study suggests the possibility of controlling the characteristics of carbon fiber-BN-epoxy composites to use for aerospace applications.

Carbonization of Pitch-coated Glass Fibers on Thermal Conductivity of Epoxy Composites (피치 코팅된 유리섬유의 탄화가 에폭시 복합재료의 열전도도에 미치는 영향)

  • Beom, Seung-Won;Lee, Seul-Yi;Lee, Ji-Han;Park, Sang Hee;Park, Soo-Jin
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.315-321
    • /
    • 2013
  • In this work, pitch-carbonized glass fibers were prepared for reinforcement of composites. The influence of acid functionalization of the fibers on the morphological, mechanical, and thermal properties of fiber-reinforced epoxy matrix composites was investigated. The acid functionalization of the fibers led to 10 and 150% increases in the mechanical and thermal properties, respectively, as compared to carbon fiber-reinforced composites. This can be attributed to the superior orientation of fiber structures and good interfacial interactions between fillers and epoxy matrix, resulting in enhanced degree of dispersion and formation of thermally conductive paths in the functionalized composites.

Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type (나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가)

  • Jun Ha Park;Soon Ho Yoon;Minkook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.186-189
    • /
    • 2024
  • This study compared and evaluated the mechanical properties of carbon fiber reinforced thermoplastic polymer (CFRTP) mixed with nanofillers. After mixing various nanofillers such as Multi-wall carbon nanotube (MWCNT), Silicon oxide, Core shell rubber, and Aramid nanofiber with Polyamide 6 (PA6) resin, this is used as a matrix to create a carbon fiber reinforced composite material (CFRP) was manufactured and its physical properties were measured. Depending on the type and mixing ratio of nanofiller, tensile strength, inter-laminar shear strength (ILSS), and Izod impact strength were measured. In terms of tensile strength and impact strength, the highest values were obtained when mixing core shell rubber, however the ILSS was optimal when mixing less than 1 wt.% of silicon oxide.

Performance Evaluation for Repair of Composite Maintenance Robot Using Carbon Fiber Spray Method (탄소섬유 분사형 복합재 유지보수 로봇의 보수성능평가)

  • Geun-Su Song;Dae-Ham Cheon;Jae-Youl Lee;Kwang-Bok Shin
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.76-85
    • /
    • 2024
  • In this paper, a composite maintenance robot using carbon fiber spray method was developed that automatically sprays mixture was created for repair to damaged areas to repair them. To develop a robot, a repair process was developed in which a mixture of milled carbon fiber, epoxy resin, and hardener is sprayed and consolidated on the damaged area. To automate the repair process, an EOAT based on a collaborative robot was developed that can automatically suction and spray the mixture onto the damaged area. To evaluate the repair performance of the robot, 0° and 90° unidirectional specimens were manufactured and tested in accordance with ASTM D3039. Tests were performed on undamaged specimen, damaged specimen, and repaired specimen by a robot after damaged. As a result of the specimen test, the tensile strength of the 0° and 90° specimens was recovered by 10% and 90% after repair. Based on the test results, the repair performance of the developed composite maintenance robot was verified.

Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄소섬유의 양극산화가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향)

  • 박수진;오진석;이재락
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.16-23
    • /
    • 2002
  • In this work, the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers was investigated in mechanical interfacial properties of composites. The surface properties of the carbon fibers were determined by acid-base values, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angles. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). As a result, the acidity or the $O_{ls}/C_{ls}$ ratio of carbon fiber surfaces was increased, due to the development of the oxygen functional groups. Consequently, the anodic oxidation led to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the anodic oxidation on fibers. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between fibers and epoxy resin matrix.

Resin Optimization for Manufacturing CFRP Hydrant Tanks for Fire Trucks (소방차용 CFRP 소화전 탱크제조를 위한 수지 최적화 연구)

  • Huh, Mong Young;Choi, Moon Woo;Yun, Seok Il
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.255-260
    • /
    • 2022
  • Lightweight hydrant tanks increase the amount of water that can be carried by fire trucks, resulting in longer water spray times during the initial firefighting process, which can minimize human and property damages. In this study, the applicability of carbon-fiber-reinforced polymer (CFRP) composites as a material for lightweight hydrant tanks was investigated. In particular, the resin for manufacturing CFRP hydrant tanks must meet various requirements, such as excellent mechanical properties, formability, and dimensional stability. In order to identify a resin that satisfies these conditions, five commercially available resins, including epoxy(KFR-120V), unsaturated polyesters(G-650, HG-3689BT, LSP8020), vinyl ester(KRF-1031) were selected as candidates, and their characteristics were analyzed to investigate the suitability for manufacturing a CFRP hydrant tank. Based on the analyses, KRF-1031 exhibited the most suitable properties for hydrant tanks. Particularly, CFRP with KRF-1031 exhibited successful results for thermal stability and elution tests.

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.