• Title/Summary/Keyword: 탄소나노재료

Search Result 586, Processing Time 0.025 seconds

Self-Sensing and Interfacial Property of Carbon Nanofiber/Epoxy Composites with Different Aspect Ratios (형상비가 다른 탄소나노섬유/에폭시 복합재료의 자체 감지능 및 계면특성)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Kim, Sung-Ju;Wang, Zuo-Jia;Park, Joung-Man;Yoon, Dong-Jin
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2008
  • Self-sensing was evaluated for carbon nanofiber (CNF)/epoxy composites with two different aspect ratios via electro-micromechanical technique and wettability test. Volumetric electrical resistance was measured to evaluate the comparative dispersion degree indirectly and it decreased due to the increase of electric contacts with increasing CNF concentration. The dispersion degree was evaluated indirectly by calculating coefficient of variation (COV) of volumetric electrical resistance. The CNF type A with a high aspect ratio showed better self-sensing than the case of CNF type B with a short aspect ratio. The CNF type B/epoxy composite showed little self-sensing at a concentration higher than 2 vol% probably due to poor dispersion. The apparent modulus of CNF type B was higher than that of CNF type A due to the orientation effect and the high surface area. The thermodynamic work of adhesion was consistent with the result of apparent modulus.

  • PDF

Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis (음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가)

  • Lee, Wonoh;Lee, Sang-Bok;Choi, Oyoung;Yi, Jin-Woo;Byun, Joon-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique (랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구)

  • Kim, Tae-Ho;Song, Seok Hyun;Jo, Kyung-Il;Koo, Jaseung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.110-115
    • /
    • 2019
  • Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

A Study on the Characteristic Analysis and Manufacture of Electrostatic Dissipation PU Foaming Film (정전방전 PU 발포필름의 제조와 특성분석)

  • Kim, Seung-Jin;Park, Jun-Hyeong;Choi, La-Hee;Park, Mi-Ra;Ma, Hye-Young;Kwon, Oh-Kyung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.58-58
    • /
    • 2011
  • CNT 나노기술을 응용한 IT산업용 적층간지용 ESD(정전방전, Electrostatic Dissipation)PU 발포필름의 제조 가공기술 및 상품화 개발은 전자제품 패키지에 요구되는 쿠션성과 정전방전 기능을 갖는 폴리우레탄 발포 필름의 제조기술을 확립함으로써 가능 할 수 있다. 특히 IT산업용 필름제품이 개발되면 ESD 성능을 발휘하게 됨으로서 정전기 쇼크에 의한 각종 전자제품의 오작동이나 파손 방지가 가능하게 되어 포장재, 자동차, 전자제품의 하우징 등으로 사용될 수 있게 된다. 현재까지 ESD 기능을 부여하기 위해서 사용되는 충전재로는 금속섬유, 금속플레이크, 탄소섬유, 카본블랙 등이 있으며, 최근 탄소나노튜브를 응용한 연구가 많이 진행되고 있는데 탄소나노튜브는 직경이 수십nm, 종횡비 1000이상의 나노섬유형태로 서 전기전도성이 구리수준으로 알려져 있고 소량을 충전할 시 기계적 특성도 오히려 증대하는 장점을 가지고 있으며 전기적 특성으로는 상대적으로 낮은 나노튜브 함량에서는 ESD를 들 수 있고 높은 함량에서는 전자파 차폐성까지 기대되고 있다. 본 연구에서는 우수한 인장강도, 기계적 강도, 열적 안정성, 내약품성을 가지면서 습식 또는 용융공정을 통해 용이하게 시트, 필름, 코팅제를 제조할 수 있는 방수, 투습방수성을 가지는 유연재료인 폴리우레탄(PU) 1액형 PU에 MWNT 함량이 3wt%인 IPA/MWNT 분산용액을 PU 함량 대비 20, 30, 40파트로 함유시켜 $120^{\circ}C$에서 2분 건조시켜 제조한 그라운드 필름에 2액형 PU와 IPA/MWNT 분산용액에 발포제를 첨가하여 발포온도 140, 150, $160^{\circ}C$에서 5분간 건조시켜 시료 필름을 제조하였다. 제조된 필름의 전기전도성 측정은 부피저항과, 표면저항을 각각 측정하여 확인하였으며, 필름의 마찰 대전압은 E.S.T-7 마찰 대전압 시험기를 이용하여 표면 마찰 대전압과 반감기를 측정하여 확인하고, 필름의 물리적 특성은 인장시험기를 이용하여 breaking stress, breaking strain을 구하였다. 필름의 표면 특성은 영상 현미경 시스템을 사용하여 ${\times}1000$ 배율로 측정하여 분산특성과의 연관성을 확인하였다.

  • PDF

Effects of Solvent-Based Dilution Condition on CNT Dispersion in CNT/Epoxy Composites (용매를 이용한 에폭시 희석 조건이 CNT 에폭시 복합재료 내 CNT 분산도에 미치는 영향)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Lee, Hyung-Ik;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • In case of CNT mixing with epoxy, epoxy matrix needs to be diluted. This work studied the effect of the dilution condition of epoxy on CNT dispersion. The optimum solvent condition using acetone and DMF was found via mechanical and solubility methods which affects, the epoxy performance. The dispersion using acetone was better than the DMF and thus higher mechanical properties. Four mixing types of CNT particle were performed. To verify the effects of each step between dilution and dispersion, the dispersion between epoxy and CNT was evaluated via the electrical resistance and optical methods. The optimum dispersion was obtained via mechanical test and thermal analysis by DSC. Among four types, the best was to disperse CNT after epoxy and hardeners were diluted respectively.

Mechanical Property of Cabon Nanofiber/Polypropylene Composites by Melt-mixing Process (압출공정에 의한 탄소나노섬유/폴리프로필렌 복합재료의 기계적 특성)

  • Byeon, Jun-Hyeong;Lee, Sang-Gwan;Eom, Mun-Gwan;Min, Gyeong-Sik;Song, Jae-Eun;Lee, Chang-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.125-128
    • /
    • 2005
  • The dispersion of carbon nanofiber (CNF) was carried out by solution blending, mechanical mixing, and sonication. CNFs at levels of 5-50% fiber weight content were mixed with polypropylene (PP) powder, and then were melt-mixed using a twin-screw extruder. For the further alignment of fibers, extruded rods were stacked uni-directionally in the mold cavity for the compression molding. For the evaluation of mechanical properties of nanocomposites, tension, in-plane shear, and flexural tests were conducted. CNF/PP composites clearly showed reinforcing effect in the longitudinal direction. The tensile modulus and strength have improved by 100% and 40%, respectively for 50 % fiber weight content, and the flexural modulus and strength have increased by 120% and 25%, respectively for the same fiber weight content. The shear modulus showed 65% increase, but the strength dropped sharply by 40%. However, the property enhancement was not significant due to the poor adhesion between fiber and matrix. In the transverse direction, the tensile, flexural, and shear strength decreased as more fibers were added.

  • PDF

Electrochemical Properties of Carbon Nano-tube as the Counter Electrode of Dye-sensitized solar cell (염료감응형 태양전지의 상대전극 재료로서 탄소나노튜브의 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung;Lee, Dae-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1090-1094
    • /
    • 2004
  • Studies on porous oxide electrode, dye and electrolyte for dye-sensitized solar cells have been intensively carried out until now. However, counter electrode have not been much studied so far. Accordingly, it is needed to investigate new counter electrode materials with superior catalyst property and to substitute for Pt electrode. In this case, carbon nano-tubes (CNTs) are one of alternatives for counter electrodes as following merits: low resistivity, excellent electron emission property, large surface area and low cost due to development of mass production technique. Such advantages gave us to select multiwalled CNTs (MWCNT) as counter electrode for dye-sensitized solar cell. Also, cyclic voltammetry and impedance spectroscopy were used to investigate electrochemical properties of both CNT electrode and Pt electrode. It was found that sheet resistance of CNT electrode was similar to that of Pt electrode, also, electrochemical properties of CNT electrode was superior to that of Pt electrode on the basis on the measurement of CV and impedance spectrum. It was found that CNT is likely to be a very promising electrode material for dye solar cells.

Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation (나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상)

  • Lee, Jung-Min;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

A Study on the Strength Evaluation and Defect Detection Capability of Adhesive Joint with CNTs (CNT를 첨가한 접착조인트의 결함탐지능 및 강도 평가에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.151-155
    • /
    • 2018
  • Mechanical joint and adhesive joint are two typical joining methods for structures. The adhesive joints distribute the load over a larger area than mechanical joints and have excellent fatigue properties. However, the strength of adhesive joint greatly depends on the environmental conditions and the skill of the operator. Therefore, there is a need for techniques to evaluate the quality of the adhesive joints. The electric resistance method is a very promising technique for detecting defects by measuring the electrical resistance of an adhesive joint in which CNTs are dispersed in an adhesive. In this study, Aluminium-Aluminium adhesive single lap joint specimens were fabricated by using the adhesive dispersing CNTs using a sonicator and a 3-roll mill, and the static strengths and defect detection capabilities of the joints using the electrical resistance method were evaluated according to the CNTs content.

Recent Research & Development Trend on Friction Stir Welding and Friction Stir Processing (마찰교반용접(FSW) 및 마찰교반처리(FSP)의 최신 연구개발 동향)

  • Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.26-29
    • /
    • 2013
  • The latest research & development trend on friction stir welding and friction stir processing technologies presented in the international symposium, 'Friction Stir Welding & Processing VII'. Papers and presentations about high temperature materials such as advanced high strength steel, stainless steel and titanum alloy shoot up this year. Papers on modeling of metal flow and control of process parameters also increased. The FSP technologies for manufacturing of carbon materials reinforced metal matrix composites were reported, too.