• Title/Summary/Keyword: 탄성조인트

Search Result 29, Processing Time 0.023 seconds

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

Inverse Dynamic Analysis of Flexible Multibody System in the Joint Coordinate Space (탄성 다물체계에 대한 조인트좌표 공간에서의 역동역학 해석)

  • Lee, Byung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.352-360
    • /
    • 1997
  • An inverse dynamic procedure for spatial multibody systems containing flexible bodies is developed in the relative joint coordinate space. Constraint acceleration equations are derived in terms of relative coordinates using the velocity transformation technique. An inverse velocity transformation operator, which transforms the Cartesian velocities to the relative velocities, is derived systematically corresponding to the types of kinematic joints connecting the bodies and the system reference matrix. Using the resulting matrix, the joint reaction forces and moments are analyzed in the Cartesian coordinate space. The formulation is illustrated by means of two numerical examples.

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

A Study on the Lateral Vibration Reduction of the High-speed Electric Multiple Unit (동력분산형 고속열차의 횡방향 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Park, Joon-Hyuk;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.797-803
    • /
    • 2019
  • This study was carried out to reduce the lateral vibration of high-speed electric multiple units. In the study, the high-speed electric multiple unit prototype (HEMU-430X) has a high lateral vibration at low equivalent conicity regardless of the wheel profiles (XP55, GV40, S1002). As wheel wear progresses and the equivalent conicity increases, the lateral vibration tends to decrease. The reason is that a combination of the suspension characteristics causes the body and bogie to resonate at a frequency of 1.4 Hz when the equivalent conicity is low, resulting in body hunting. An investigation of the lateral vibration of overseas high-speed trains showed that a decrease in the hydraulic stiffness of the yaw damper could improve the vibration. The series stiffness of the yaw damper is a combination of the hydraulic stiffness and elastic joint. In this study, an attempt was made to improve the lateral vibration by lowering the stiffness of the elastic joint. The series stiffness of the adjusted yaw damper was approximately 60% compared to the original one. The on track test results showed improvement in the lateral vibration for both running directions. The vibration reduction method of this study can be used for EMU-250 and EMU-320 in future commercial operations.

Failure Mode and Strength of Unidirectional Composite Single Lap Bonded Joints II. Failure Prediction (일방향 복합재료 Single Lap 접합 조인트의 파손 모드 및 파손 강도 II. 파손 예측)

  • Yi Young-Moo;Kim Chun-Gon;Kim Kwang-Soo
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A methodology is presented for the failure prediction of composite single-lap bonded joints considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used in the methodology. The failure predictions have been performed using finite element method and the proposed methodology. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded Joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.

Finite Element Simulation of Elastic Waves for Detecting Anti-symmetric Damages in Adhesively-Bonded Single Lap Joint (단면 겹치기 접착 조인트에 존재하는 비대칭 결함 탐지를 위한 탄성파 유한요소 시뮬레이션)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.124-130
    • /
    • 2009
  • This study presents a finite element simulation of elastic waves for detecting anti-symmetric damages in an adhesively-bonded single lap joint. Plane strain elements were used for modeling adherents (aluminum) and adhesives (epoxy). Three types of damage were introduced: thickness reduction, elasticity deterioration, and voids in the adhesive layers, and two excitation and reception arrangements (ER1 and ER2) were used to investigate the detectability of the damage. The simulation showed that symmetrically located damage, such as a thickness reduction, can be detected by one excitation and one reception arrangement (ER1) and anti-symmetric damages, such as elasticity deterioration and voids, can be detected by modified two-point elastic wave excitation (ER2). Compared with the ER1 arrangement, the ER2 arrangement does not require a baseline signal for damage detection; hence, an efficient method of anti-symmetric damage detection in an adhesively-bonded single lap joint is proposed.

Oil Leakage Prediction through Cut Part of Double Elastomeric Seal (이중 탄성중합체 시일의 절단부 오일누유 예측)

  • Taek-Sung Lee;Yeon-Hi Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.165-171
    • /
    • 2023
  • The rotary joint connecting the upper and lower structures of construction machinery and special vehicles transmits hydraulic pressure as the shaft and housing rotate, and multiple seals are assembled to prevent oil leakage into the oil flow channel. Because the seal material is rigid and difficult to assemble, we sought a method to assemble it after cutting. The shapes of the cutting surface are L-shaped and / shaped, and the leakage standard when hydraulic pressure is applied is the contact pressure generated on the cutting surface. The structure and material of the seal are composed of a double elastomer, and nonlinear contact structural analysis is performed when only the high-rigidity PE material is cut. Studies have shown that the shorter the cutting length, the better the leakage prevention and the higher the possibility of leakage to the bottom surface where NBR and PE come into contact rather than the top surface where the PE and the housing come into contact.

Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method (이종재료 금속조인트의 굽힘에 의한 잔류응력 해석)

  • Baek Tae-Hyun;Jung Girl;Park Tae-Geun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF

An analytical Study for the Development of Highly Elastic Material applicable for Joint in Modular Pavement (모듈러 포장에 적용가능한 고탄성 연결재료 개발을 위한 해석적 연구)

  • Lee, Young-Ho;Kang, Su-Tae;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5947-5955
    • /
    • 2013
  • This study was intended to estimate the axial deformation of joint between pavement modules in the rapid-constructible modular pavement system, and to investigate the applicability of two-phase composites for a joint material, which was composed of cement paste, epoxy, or polyurethane as a matrix and sand as particles. A case which had supports under the pavement module as well as a case which the module was put on roadbed directly were considered in FEM analysis for the axial deformation. The effect of self-weight, live load, thermal change, and drying shrinkage were estimated and the thermal change was found to cause the largest deformation compared to the others. Deformation capacity of two-phase composites was predicted using the modified shear-lag model. In the analytical results for the elastic modulus and maximum tensile strain with different volume fractions of sand, 20~30 % replacement of sand was revealed to satisfy the required strain capacity with economy when if the width of joint was designed to be 15~20 mm.