• Title/Summary/Keyword: 탄성압축량

Search Result 123, Processing Time 0.029 seconds

Effect of Magnetic Force on the Compressive and Dynamic Properties of Magnetorheological Elastomers (자기력이 자기유동 탄성체의 압축 및 동적 특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lee, Jong-Hang
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The compressive and dynamic properties of magnetorheological elastomers were investigated as functions of magnetizable particle volume fraction, alignment of the embedded particle and magnetic force. The specimens consisted of pure and filled silicons with randomly dispersed, longitudinal and transverse aligned magnetizable particle chains. To align the embedded particles in the elastomer, the cross-linking of the elastomer composites took place in a magnetic field. The compression and dynamic tests in the absence and the presence of different magnetic forces were carried out. The modulus and loss factor of the elastomer composites increase with increasing volume fraction at the same magnetic force. The case of longitudinal alignment shows a high modulus and loss factor when compared to the case of transverse alignment or random dispersion.

Analysis of Mechanical Face Seals for Design Purpose Part II: Thermoelastic, Wearing and Vibrational Effects (설계목적을 위한 기계평면시일의 해석, 제2보: 열탄성, 마모 및 진동의 영향에 관하여)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.34-42
    • /
    • 1990
  • 기계명면시일의 접촉 운동면에서 유체가 비압축성이고, 점서의 영향을 받는 경우에 대한 체적 누설 유동량과 마찰 토오크를 멱급수의 방법을 이용하여 추정하였다. 본 연구에서 고려되고 있는 설계인자로 시일의 경사도, 접촉 운동면에서의 사인파형, 코우닝, 열탄성 변화량, 마모량, 시일의 스프링 강성도에 따른 축방향의 변화량을 종합적으로 고려하여 해석하였다. 계산된 결과에 의하면 특히 회전속도가 증가되면 열탄성 변화량에 의한 시일의 누설 유동량과 마찰 토오크는 커다란 영향을 받고 있는 것으로 나타나고 있다.

Strength and Modulus Relationship of Concrete for Rigid Pavement (포장용 콘크리트의 강도 및 탄성계수 상관관계식)

  • Yang, Sung-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.205-213
    • /
    • 2007
  • Strength relationships are presented through experimental data from the concrete strength tests in this study. Various strength tests such as the compressive, flexural, and splitting tensile strength and the modulus of elasticity are included. An experimental work was performed to determine the various strength characteristics for various mix designs. Three different coarse aggregates such as granite, limestone, sandstone were used and included were fine aggregates such as natural sand, washed sand and crushed sand. Also included was cement amount as experimental variable. It was confirmed that each strength value with respect to curing time is to follow a typical strength development curve. With this somewhat reliable test results various strength relationships such as flexural strength-compressive strength, splitting tensile strength-compressive strength, modulus of elasticity-compressive strength, splitting tensile strength-flexural strength were analyzed through statistics. Experimental data were well fitted to the 0.5-power relationship of flexural strength and compressive strength which has been commonly accepted. The splitting tensile strength is expected to be best in the linear relationship from the flexural strength data. Finally splitting tensile strength was found to be proportional to the 0.87 power of the cylindrical compressive strength.

  • PDF

Analysis of Mechanical Face Seals for Design Purpose. Part II : Thermoelastic, Wearing and Vibrational Effects (설계목적을 위한 기계평면시일의 해석. 제2보 : 열탄성, 마모 및 진동의 영향에 관하여)

  • Kim, Chung Kyun
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • 기계평면시일의 접촉 운동면에서 유체가 비압축성이고, 점성의 영향을 받는 경우에 대한 체적누설 유동량과 마찰 토오크를 멱급수의 방법을 이용하여 추정하였다. 본 연구에서 고려되고 있는 설계인자로 시일의 경사도, 접촉 운동면에서의 사인파형, 코우닝, 열탄성 변화량, 마모량, 시일의 스프링 강성도에 따른 축방햐의 변화량을 종합적으로 고려하여 해석하였다. 계산된 결과에 의하면 특히 회전속도가 증가되면 열탄성 변화량에 의한 시일의 누설 마찰 토오크가 커다란 영향을 받고 있는 것으로 나타나고 있다.

A Comparison Study between Top-down Load Test and Bi-directional Load Test Analysis Method in Rock-socketed Small Size Drilled Shaft (암반소켓된 소구경 현장타설말뚝의 정재하시험과 양방향재하시험 분석법 비교연구)

  • Song, Myungjun;Song, Younghun;Jung, Minhyung;Park, Youngho;Park, Jaehyun;Lee, Juhyung;Chung, Moonkyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.5-12
    • /
    • 2013
  • In this study, each top-down load test and bi-directional load test has been performed on the 480mm diameter of two rock socketed drilled shafts, which are located next to each other, and the results have been compared. The result shows that the settlement from the equivalent load-settlement curve of bi-directional load test is smaller than one from top-down load test, because elastic is not considered in equivalent load-settlement curve of bi-directional load test. Therefore elastic shortening should be considered to obtain appropriate equivalent load-settlement curve. Three existing methods used to obtain equivalent load-settlement curve with consideration of elastic shortening has been compared with the result of top-down load test. The result shows that those existing methods are sufficiently applicable to the design. In addition, result of comparison between top-down load test and bi-directional load test shows that bi-directional load test was found to overestimate bearing capacity because it does not consider pile body failure.

Analysis of Confinement Effectiveness for FRP Confined Concrete Columns (FRP로 구속된 콘크리트 압축부재의 구속효과 분석)

  • Choi, Eunsoo;Choi, Seung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.19-24
    • /
    • 2011
  • Concrete columns strengthening effect due to FRP (Fiber Reinforced Polymer) confinement depends on the elastic modulus of the FRP. This study analyzes the retrofitting effect of FRP confinements according to elastic modulus of FRPs using the existing data and suggests a practical model to assess the strengthening effect. This study subdivides the FRP elastic modulus into three parts based on normal concrete and steel elastic modulus. The slope and the y-axis intersection seem to increase with increasing FRP elastic modulus. In addition, the strengthening effect does not develop up to some amount of FRP confinement having relatively smaller elastic modulus than the compressive elastic modulus of concrete. In this case, a linear model to assess the strengthening effect is hard to be used. Thus, this study suggests that the FRP jackets having 2 times larger elastic modulus than that of concrete are recommended to be used for retrofit of concrete and that a linear model can be applied for the case. The suggested model shows nearly the same result regardless to the restraint of the y-axis intersection. This has been observed at the model of steel confinement and, thus, is a reliable result.

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

An Estimation Procedure for Concrete Modulus by Using Concrete Strength Relationships in the LTPP Test Sections (콘크리트 물성 정량화식을 이용한 LTPP 구간의 탄성계수 추정방법)

  • Yang, Sung-Chul;Cho, Yoon-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • Concrete strength relationship between various strength properties was presented through experimental data from concretes made from different sources of coarse aggregates and fine aggregates, and different amount of cement contents. In the strength relationship were included compression-flexure, compression-split tension, compression-modulus and flexure-split tension. A total of 61~81 data sets were analyzed while each data set is composed of 3 to 4 experimental test data. Using the proposed strength relations, a procedure to reliably estimate modulus values from the LTPP field test section was suggested. Core specimens were taken from 10 LTPP sections on the expressway as well as 4 sections on the national road. Then compressive strengths and modulus were determined in the lab. Finally concrete modulus was averaged with the estimated values by using the derived relationship and experimental values.

Dynamic Behavior of Weathered Granite Soils after Freezing-thawing (화강풍화토의 동결-융해 후의 동적 거동)

  • 윤여원;김세은;강병희;강대성
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.69-78
    • /
    • 2003
  • In order to investigate the dynamic behavior of weathered granite soils before and after freezing-thawing, cyclic triaxial tests were conducted for the specimens not only with the variation of silt contents within 20% but with plasticity index within 20%. As the results, the dynamic shear modulus of weathered granite soils decreased with increasing silt contents. However, the change in damping ratio was negligible. The influence of freezing-thawing on shear modulus and damping ratio was minimal for the granite soils with variation of silt contents. For the case of the weathered soils with variation of plasticity index, the shear modulus increased with plasticity index within 20%, while the modulus decreased remarkably after freezing-thawing.

A Study on the Compressive Properties of Seawater-absorbed Carbon-Epoxy Composites - Hydrostatic Pressure Effect (해수가 흡수된 Carbon-Epoxy 적층복합재의 압축특성에 대한 연구- 정수압력 영향)

  • Lee Ji Hoon;Rhee Kyong Yop;Kim Hyun ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.191-195
    • /
    • 2004
  • This study investigated the effect of deep-sea environment on the compressive characteristics of polymer matrix composite. The specimens used in the experiment were thick Carbon-Epoxy composites that were made from Carbon-Epoxy prepregs. The specimens were immersed into seawater for thirteen months. The seawater content at saturation was about 1.2% of the specimen weight. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. It was found that the compressive elastic modulus increased about 10% as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased additional 2.3% as the pressure increased to 270 MPa. It was also found that compressive fracture strength and compressive fracture strain increased with pressure in a linear behavior. Compressive fracture strength increased 28% and compressive fracture strain increased 8.5% as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.