• Title/Summary/Keyword: 탄성문제

Search Result 541, Processing Time 0.029 seconds

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

A Study on Scale Effects in Jointed Rock Mass Properties, and Their Application (절리 암반물성의 크기효과 및 그 적용에 관한 연구)

  • 김창용;문현구
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.147-164
    • /
    • 1997
  • This study has the assumption that scale effects in rock mass properties are atrributed to the discontinuous and inhomogeneous nature of rock masses. In order to escape the general equivalent material approach applied to the concept of representative volume element, this study presents the new method considering irregular i oink geometry and arbitrary numbers of i oink and arbitrary joint orientations. Based on the theoretical approach, this theory is applied to a real engineering project. Showing the property variations with size of rock mass element, various numerical experiments about scale effect are conducted. Particularly, to prove the adequacy of the verification process in scale effect with nomerical method, and to investigate the detailed source of scale effect, 4 models with increas ins number of joints are tested. On the basis of the experimental results, the test results of scale effects in 3-D rock mass are presented. From these experiments the effects of the mechanical properties of rock joints on the scale effects in rock mass strength and elastic constants are discussed. To verify the mechanism of scale effects in jointed rock mass, two models with different j oink geometries are studied.

  • PDF

Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems (일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법)

  • Kim, Yun-Yeong;Jang, Gang-Won;Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

On the Structural Analysis Using the Isogeometry Analysis Approach (등기하 해석법을 이용한 구조해석)

  • Lee, Joo-Sung;Chang, Kyoung-Sik;Roh, Myoung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In the present work, isogeometric analysis in linear elasticity problem is conducted using the basis functions from NURBS. The objectives of isogeometric analysis introduced is to integrate both geometric modeling(CAD) and computational analysis(CAE), and this can be accomplished from direct usage of geometric modeling by NURBS as the computational mesh. The merit of the isogeometry analysis is that NURBS surface are able to represent exact geometry from the control points and knot vectors, and also subsequent refinement is relatively simple relatively. In order to verify the computer codes developed in this study, it has been applied to two structural models of which geometry are simple ; 1) circular cylinder subjected to the constant internal pressure loading, 2) square plate with circular hole at center subjected to uniform tension. The exact solutions of these two models are available. Convergence of the approximate solutions by the present code for the isogeometry analysis are investigated by mesh refinement with inserting knots (h-refinement) and by mesh refinement with order elevation of the basis functions (p-refinement).

An Experimental Study on the Reinforcing Effects of Mixtures of Vinyl Strip and Cement on the Sand Specimens (비닐스트립-시멘트 혼합 모래시편의 보강효과에 대한 실험연구)

  • Yu, Jeong-Min;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.5-16
    • /
    • 2018
  • The ever-increasing amount of waste vinyl is causing big environmental problems. In particular, those from farming industry are sometimes left on site or even illegally reclaimed due to the lack of environmental concerns and capacity for collection, which worsens the situation. It is, therefore, believed that the recycling of waste vinyl is the most ideal solution in the viewpoint of environmental preservation. In this context, the potential of vinyl strip as a ground reinforcing material is investigated to expand the application of waste vinyl recycling. In this study, a series of uniaxial compression tests and resonant column tests were performed for sand specimens reinforced with vinyl strips and cement to investigate their reinforcing effects on static and dynamic behaviors. The changes in the uniaxial compressive strength (UCS), the shear modulus and the damping ratio according to the mixing ratio of vinyl strips and cements were analysed for sand specimens, having 40% and 60% relative densities, under various mixing conditions. As a result, both the static and dynamic reinforcing effects of vinyl strip-cement mixture were confirmed and the optimum mixing ratio was proposed.

Development of Frictional Wall Damper and Its Analytical Applications in R/C frame Structures (벽식마찰감쇄기의 개발 및 R/C 골조구조물에의 해석적 적용)

  • 조창근;박문호;권민호;강구수;서상길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.718-725
    • /
    • 2002
  • A wall type friction damper is newly Proposed in this paper to improve the performance of R/C framed structures under earthquake loads. Although traditional dampers are usually placed as bracing members, the application ot bracing-type dampers into R/C structures is not as simple as those of steel structures due to the connection between R/C members and dampers and the stress concentration in connection region. Proposed damper is consisted of Teflon-sheet slider and R/C shear wall. The damper can also avoid stress concentration and reduce P-Δ effect. To evaluate the performance of proposed damper, nonlinear dynamic analyses are carried on 10 story and 3 bay R/C structures with numerical model for the damper. It is shown that the damper reduces the inter-story drifts and the time-historic responses; especially the damper prevents from forming plastic hinges on the lower columns.

The Determination of Critical Buckling Load Applied to Tapered Columns (일정변단면(一定變斷面) 장주(長柱)의 임계좌굴하중(臨界挫屈荷重)의 결정(決定))

  • Yu, Chul Soo;Sohn, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • New formulas to determine the critical elastic buckling load of long tapered columns are given. This study is restricted to solid round or rectangular columns with fixed-free ends as often used in highway design. The exact solution of the differential equation of the deflection curve is expressed in terms of Bessel Function and the solution is numerically evaluated using Bisection method by computer. In the F.E.M analysis of columns under their own weight, the stability problem can be resulted in a eigen value problem of conservative system. Approximate solution by the F.E.M is evaluted numerically using Jacobi method and compared with exact solution of the prismatic column to increase the precision. In addition, critical buckling load of the tapered column for every shape factor and ratio of cross-sectional change (Diameter of bottom end/Diameter of upper end) was converted into a comparable expression to critical buckling load of the prismatic column.

  • PDF

Lateral Buckling Analysis of the Thin-Walled Space Frame (박벽(薄壁) 공간(空間)뼈대구조(構造)의 횡좌굴(橫挫屈) 해석(解析))

  • Kim, Moon Young;Shin, Hyun Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The tangent stiffness matrices of the plane frame and the thin-walled space frame are derived by using the principle of virtual displacement. In case of the plane frame, the shape function and stiffness matrices are presented for the rigid-hinged condition. For the unsymmetric thin-walled space frame, the elastic and geometric stiffness matrices in three cases of the unrestrained torsion, the restrained torsion, and the restrained anti unrestrained torsion are evaluated by using the various Hermitian polynomials as the shape function. Numerical examples for the lateral buckling analysis of the space frames and the circular arch illustrate the accuracy and convergence characteristics of the derived formulations.

  • PDF

Load and Structural Analyses of Composite Micro Aerial Vehicle (복합재료 초소형 비행체의 하중 및 구조해석)

  • Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.34-40
    • /
    • 2005
  • Most analyses and researches on Micro Aerial Vehicle(MAV) have focused upon propulsion, automatic control, aerodynamic configuration in low Reynolds number region, and miniaturization of telemetric parts. In the present study, a structural concept for MAV is designed by using the composite material suitable for light flight structures. In order to study the load path and stress state of the MAV, the load and structural analyses are simultaneously performed by the aeroelasticity module of MSC/NASTRAN. The stability derivatives of the MAV are obtained for three symmetric, two antisymmetric, and four unsymmetric maneuvering conditions. Although the aerodynamic theory in MSC/NASTRAN could not be proper for MAV analysis, it provides an traditional and effective tool for trim and load analyses and may be corrected with the results by more accurate theory or test. The results show that the inertial load due to payloads has a more effect on stress rather than the aerodynamic load.