• Title/Summary/Keyword: 탄성균열

Search Result 480, Processing Time 0.029 seconds

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

Welding Characteristics of 400MPa Grade Hot Rolled H-beam(SHN400) for Building Structure (400MPa급 건축구조용 열간압연 H형강(SHN400)의 용접특성)

  • Kim, Hee-Dong;Yang, Jae-Geun;Lee, Eun-Taik;Kim, Woo-Bum;Oh, Young-Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.129-136
    • /
    • 2012
  • This study seeks to evaluate the welding characteristics of SHN400 steel, which is suitable for the steel material used in building structures in KS. For this purpose, the Y-groove weld crack test and hardness, tensile, bending, cross tensile, and charpy V notch tests at the welding point were conducted with specimens taken from the highest, the thickest and the commonly used H-beams for girder or beam members. Each test was conducted under the KS test conditions. All tests results satisfied the requirements of KS and the welding requirements for the proper inelastic behavior of structure, indicating that SHN400 can be used for the building structure as a structural material.

Self-healing Engineering Materials: I. Organic Materials (자기치유 공학재료: I. 유기 재료)

  • Choi, Eun-Ji;Wang, Jing;Yoon, Ji-Hwan;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Scientists and engineers have altered the properties of materials such as metals, alloys, polymers, ceramics, and so on, to suit the ever changing needs of our society. Man-made engineering materials generally demonstrate excellent mechanical properties, which often tar exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without intentional human interaction. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account. Various self-healing ptotocols that can be applied for the organic materials such as polymers, ionomers and composites can be developed by utilizing suitable chemical reactions and physical intermolecular interactions.

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

A Finite-difference Modeling of Love Channel Waves in Transversely Isotropic Medium (유한차분식을 이용한 Transverse 이방성(異方性) 매질내 Love채널파동 연구)

  • Cho, Dong-Heng;Lee, Sung-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.281-287
    • /
    • 1994
  • The present paper deals with numerical modeling of Love channel waves in transversely isotropic elastic medium. First, an explicit finite-difference scheme of second order approximation is formulated with the wave equation of SH particle displacement in transversely isotropic medium. Since it is a heterogeneous formulation, it should enable efficient modeling of complex model structures without additional treatment of the internal boundary matching. With a model of isotropic coal seam embedded in high velocity host rock, seismograms are synthesized and tutn out to be essentially identical with published ones of Korn and $St{\ddot{o}}ckl$. Next, anisotropic coal seams are investigated. It is found that the horizontal velocity of the seam appears to play a major role of determining the group velocity of Love channel waves. The group velocity increases with the increase of the horizontal velocity or vice versa. However, further study will be needed to exploit fully Love channel waves for the determination of lithology, stratification, fracture in sedimentary rocks, for instance, for hydrocarbon exploration and development.

  • PDF

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

Analysis of Granite Behavior In Blasting Using Microplane Constitutive Model (마이크로플레인 모델을 이용한 발파시 화강암의 거동해석)

  • Zi, Goangseup;Moon, Sang-Mo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.87-100
    • /
    • 2006
  • A kinematically constrained microplane constitutive model is developed for intact granite. The model is verified by fitting the experimented data of Westerly granite and Bonnet granite. Using the model with the standard finite element method, the behavior of the intact granite subjected blasting impact is studied. What is studied includes the attenuation of the blasting waves, the size of the fractured zone and the effect of the charge condition to avoid overbreak of the rock mass. The model developed captures the energy loss due to the inelastic behavior and the microcracking of granite during blasting very well. The attenuation of the blasting waves calculated based on the model is much more than that based on the linear-elastic constitutive law. The size of damaged (or fractured) zone is calculated directly from the principal strain as blasting impact is spreading, not like in the case with the linear elasticity model.

  • PDF

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.