• Title/Summary/Keyword: 탄성경계

Search Result 508, Processing Time 0.02 seconds

Performance Evaluation of a Time-domain Gauss-Newton Full-waveform Inversion Method (시간영역 Gauss-Newton 전체파형 역해석 기법의 성능평가)

  • Kang, Jun Won;Pakravan, Alireza
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.223-231
    • /
    • 2013
  • This paper presents a time-domain Gauss-Newton full-waveform inversion method for the material profile reconstruction in heterogeneous semi-infinite solid media. To implement the inverse problem in a finite computational domain, perfectly-matchedlayers( PMLs) are introduced as wave-absorbing boundaries within which the domain's wave velocity profile is to be reconstructed. The inverse problem is formulated in a partial-differential-equations(PDE)-constrained optimization framework, where a least-squares misfit between measured and calculated surface responses is minimized under the constraint of PML-endowed wave equations. A Gauss-Newton-Krylov optimization algorithm is utilized to iteratively update the unknown wave velocity profile with the aid of a specialized regularization scheme. Through a series of one-dimensional examples, the solution of the Gauss-Newton inversion was close enough to the target profile, and showed superior convergence behavior with reduced wall-clock time of implementation compared to a conventional inversion using Fletcher-Reeves optimization algorithm.

Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme (1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석)

  • Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • This paper introduces a mesh continuation scheme for a one-dimensional inverse medium problem to reconstruct the spatial distribution of elastic wave velocities in heterogeneous semi-infinite solid domains. To formulate the inverse problem, perfectly-matched-layers(PMLs) are introduced as wave-absorbing boundaries that surround the finite computational domain truncated from the originally semi-infinite extent. To tackle the inverse problem in the PML-truncated domain, a partial-differential-equations(PDE)-constrained optimization approach is utilized, where a least-squares misfit between calculated and measured surface responses is minimized under the constraint of PML-endowed wave equations. The optimization problem iteratively solves for the unknown wave velocities with their updates calculated by Fletcher-Reeves conjugate gradient algorithms. The optimization is performed using a mesh continuation scheme through which the wave velocity profile is reconstructed in successively denser mesh conditions. Numerical results showed the robust performance of the mesh continuation scheme in reconstructing target wave velocity profile in a layered heterogeneous solid domain.

Estimation of Tensile Strain Effect Factor of Layer Interface Considering Lateral Loads of Moving Vehicle (주행차량의 수평하중을 고려한 층 경계면의 인장변형률 영향계수 개발)

  • Seo, Joo Won;Choi, Jun Seong;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.951-960
    • /
    • 2006
  • Structural pavement analysis considering lateral loads of moving vehicle was carried out in order to simulate passing vehicle loads under various interface conditions. To verify of existing multi-layer elastic analysis of layer interface effect parameters, this study compared outputs by using ABAQUS, a three dimensional finite element program and KENLAYER, multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect parameters was performed in this study. As results of the study, if only vertical loads of moving vehicle is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface effect parameters. On the other hand, when lateral loads are applied with vertical loads, pavement behavior and performance are greatly changed with respect to layer interface conditions. The thinner thickness of the asphalt layer is and the smaller elastic moduli of the asphalt layer is, the more pavement behavior is influenced by interface conditions. In addition, regression analysis equation analytically computing tensile strain which was considered thicknesses and elastic moduli of the asphalt layer and layer interface effect parameters at the bottom of the asphalt layer was presented using database from numerical analyses on national pavement model sections.

A Study on the Support Conditions of Cable-stayed Bridge System (사장교계의 지지조건에 대한 연구)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.3 s.6
    • /
    • pp.119-125
    • /
    • 2002
  • The objective of this study is to evaluate elastic modulus of bridge-axis direction for optimum structure system in the cable-stayed bridge design. In numerical example of this study, a slight change in axis direction elastic modulus causes major modifications of the bridge characteristics when it is $1\times10^4$ tonf/m/bearing or less. Therefore, the elastic modulus was set at this lower limit of $1\times10^4$ tonf/m/bearing where the strength of the entire bridge system is still determined by girder strength and the entire system is insensitive to variations in elastic modulus. Besides, cable-stayed bridge with freely supported girders have slightly longer vibration periods in the horizontal direction for earthquake forces.

Modeling of Elastodynamic Problems in Finite Solid Media (유한 고체내 탄성동역학 문제의 모델링)

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi mode conversion of guided wave scattering problems. Time dependent wave forms are obtained through the inverse Fourier transformation of the numerical solutions in the frequency domain. 3D BEM program development is underway to model more practical ultrasonic wave signals. Some encouraging numerical results have recently been obtained in comparison with the analytical solutions for wave propagation in a bar subjected to time harmonic longitudinal excitation. It is expected that the presented modeling techniques for elastic wave propagation and scattering can be applied to establish quantitative nondestructive evaluation techniques in various ways.

  • PDF

Dynamic Responses on Semi-Infinite Space Due to Transient Line Source in Orthotropic Media (선형하중에 의한 직교이방성 매체의 반구계에서 동적 응답 특성)

    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.974-980
    • /
    • 1998
  • The analysis of dynamic responses are carried out on several orthotropic systems due to transient line source. These include infinite and semi-infinite spaces. The media possess orthotropic or higher symmetry. The lode is in the form of a normal stress acting with parallel to symmetry axis on the plane of symmetry within the materials. The results are first derived for responses of infinite media due to a harmonic line source. Subsequently the results for semi-infinite are derived by using superposition of the solution in the infinite medium together with a scattered solution from the boundaries. The sum of both solutions has to satisfy stress free boundary conditions thereby leading to the complete solutions. Explicit splutions for the displacements due to transient line loads are then obtaind by using Cargniard-DeHoop contour.

  • PDF

AVO Analysis on Gas Hydrates in the Continental Margin off the South shetland Islands, Antarctica (남극 남쉐틀랜드 군도 대륙주변부의 가스수화물 AVO 반응분석)

  • Goo, Kyoung-Mo;Hong, Jong-Kuk;Jin, Young-Keun;Park, Min-Kyu;Nam, Sang-Heon;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Geophysical survey has been conducted on the continental margin off the South Shetland Islands aboard R/V Onnuri of KORDI in 1992/1993. About 800-line km of 96-channel reflection data have been acquired. On the seismic section, BSR with strong reflectivity and negative polarity has been found at 700 ms below the sea bottom. BSR is considered as the base of gas hydrates and AVO analysis was performed to study physical properties along BSR. True amplitude recovery and surface consistence amplitude were applied to seismic data and angle gathers were obtained. AVO gradient and AVO intercept are calculated on every CDP gather. Section of AVO intercept show strong reflectivity and negative polarity on BSRs and stronger continuity of BSR than stacked section. Cross plot of P-G indicates that the lower layer below BSR is filled with free gas.

  • PDF

Approximate Solution for Finding the Buckling Strength of Orthotropic Rectangular Plates (직교이방성판의 좌굴강도를 구하기 위한 근사식의 개발)

  • J. H. Jung;S. J. Yoon;S. K. You
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.28-38
    • /
    • 2003
  • In this study, the analytical investigation of orthotropic rectangular plate is presented. The loaded edges are assumed to be simply supported and the unloaded edges could have elastically restrained boundary conditions including the extreme boundary condition such as simple, fixed, and free. Using the closed-form solutions, the buckling analyses of orthotropic plate with arbitrary boundary conditions are performed. Based on the data obtained by conducting numerical analysis, the simplified form of equation for finding the buckling coefficient of plate with elastically restrained boundary conditions at the unloaded edges is suggested as a function of aspect ratio, elastic restraint. and material properties of the plate. The results of buckling analyses by closed-form solution and simplified form of solution are compared for various orthotropic material properties. It is confirmed that the difference of results is less than 1.5%.

Vibration Analysis of Special Orthotropic Plates on Elastic Foundation with Arbitrary Boundaries (자유경계를 갖고 탄성기초에 놓인 특별직교이방성 적층복합판의 진동해석)

  • 김덕현;이정호;홍창우;심도식
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 1999
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the concrete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

  • PDF

Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space (비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, the dynamic stiffness of scaled boundary finite element method(SBFEM) was analytically derived to represent the non-homogeneous space. The non-homogeneous parameters were introduced as an expotential value of power function which denoted the non-homogeneous properties of analysis domain. The dynamic stiffness of analysis domain was asymptotically expanded in frequency domain, and the coefficients of polynomial series were determined to satify the radiational condition. To verify the derived dynamic stiffness of domain, the numerical analysis of the typical problems which have the analytical solution were performed as various non-homogeneous parameters. As results, the derived dynamic stiffness adequatlly represent the features of the non-homogeneous space.