• 제목/요약/키워드: 탄산가스 시비

검색결과 12건 처리시간 0.021초

탄산가스 소비율을 고려한 $CO_2$농도 제어알고리즘 개발(I) (Development of $CO_2$ concentration control algorithm considering $CO_2$ consumption rate(I))

  • 진제용;홍순호;류관희;노상하
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1992년도 학술논문발표요지
    • /
    • pp.14-14
    • /
    • 1992
  • 시설원예에 있어서 작물의 생장량을 촉진시켜 수확시기를 앞당기고, 생산량을 증가시키며, 품질을 향상시키기 위하여 탄산가스를 시비하는 재배방법이 도입되고 있다. 그러나 탄산가스의 시비가 작물에 악영향을 주는 경우도 보고되고있어 탄산가스 시비에 주의를 기울여야 한다. 기존의 탄산가스 시비방법은 일정한 농도를 유지하는 것으로 탄산가스 낭비나 고농도에 의한 생육장애 혹은 탄산가스 결핍을 초래하는 등의 문제점을 갖고 있다. (중략)

  • PDF

탄산 시비 농도와 시비 시간이 착색단고추 생육에 미치는 영향 (Effects of $CO_2$ Enrichment Concentration and Duration on Growth of Bell Pepper (Capsicum annuum L.))

  • 강윤임;이시영;김학주;전희;정병룡
    • 생물환경조절학회지
    • /
    • 제16권4호
    • /
    • pp.352-357
    • /
    • 2007
  • 본 연구는 착색단고추의 겨울철 시설재배시 탄산가스 시비의 이용효율을 높이기 위한 시비 농도 및 시간을 구명하기 위해 수행하였다. 탄산가스의 공급 설정농도 수준은 400ppm과 700ppm이였으며, 시비 시간은 09:00-12:00(3h)과 09:00-15:00(6h)로 농도와 시간을 조합한 4 수준과 무처리구를 합하여 5 처리를 하였고, 정식 후 55일간 처리하였다. 그 결과 전반적으로 탄산가스 농도가 높고, 시비시간이 길어질수록 전반적인 생육이 증가하였다. 그러나 겨울철에는 광도가 제한 요소로 작용하기 때문에 탄산가스의 높은 농도보다는 시비 시간이 길어질수록 생육이 더 증가하였다. 그러므로 광이 적은 겨울철에는 높은 농도의 이산화탄소를 짧은 시간 시비하는 것보다 낮은 농도로 긴 시간 시비하는 것이 효율적인 것으로 판단된다.

재배 시 탄산시비가 딸기 '매향' 의 품질과 저장성에 미치는 영향 (Effects of Carbon Dioxide Fertilization on the Quality and Storability of Strawberry 'Maehyang')

  • 최인이;윤재수;윤혁성;최기영;김일섭;강호민
    • 생물환경조절학회지
    • /
    • 제26권2호
    • /
    • pp.140-145
    • /
    • 2017
  • '매향' 딸기의 재배 시 1,000ppm 농도의 탄산시비가 품질과 저장성에 미치는 영향을 알아보고자 본 연구를 수행하였다. 딸기 수확 후 품질을 비교 하였는데, 경도, 당도, 그리고 산도가 무처리구에 비해 탄산가스 처리구에서 높은 수치를 나타내었다. 기존 유통조건인 관행저장 처리구는 10일간, 20,000cc OTR 필름으로 MA저장 처리구는 20일간 $8^{\circ}C$에서 저장하였다. 저장 중 생체중 감소율은 탄산시비 처리에 관계없이 MA저장 처리구가 저장종료일까지 1%의 낮은 감소를 보였다. 저장 중 MA저장 처리구의 포장내 산소, 이산화탄소, 그리고 에틸렌가스 농도는 탄산시비 처리에 따른 유의성있는 차이를 보이지 않았다. 저장종료일의 경도는 저장방법에 관계없이 탄산시비 처리구가 무처리구보다 높은 수치를 나타내었으나, 당도와 산도 그리고 과색은 처리에 따른 차이가 나타나지 않았다. 패널테스트를 통한 외관은 탄산시비 처리하여 MA저장한 처리구가 가장 우수하였으며, 이취는 탄산시비 처리하여 관행저장한 처리구가 가장 낮았다. 곰팡이 발생률은 두 저장방법 모두 무처리구에 비해 탄산시비 처리구가 낮은 수치를 보였다. 이상의 결과를 볼 때, 재배 중 탄산시비는 '매향' 딸기의 경도를 높여 $8^{\circ}C$ 저장 중 외관상 품질과 저장 후 경도를 높게 유지시켜 저장성을 향상시킬 수 있으며, 저장방법으로는 MA저장이 저장기간을 연장시킬 것으로 판단된다.

온실의 관개 시스템 실태 조사 (Status of Irrigation System for Greenhouses)

  • 윤용철;서원명
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 2002년도 학술발표논문집
    • /
    • pp.3-6
    • /
    • 2002
  • 최근 시설재배에 대한 인식변화와 국민소득 향상과 함께 식품의 소비 형태도 변화되어 곡류의 소비량은 계속 감소하고 있는 반면, 신선한 과체류의 소비는 크게 증가하는 추세에 있고, 또 화훼류의 소비도 점점 증가하고 있다. 이러한 변화와 더불어 시설도 현대화, 대형화가 이루어지면서 시설내의 보온 및 환기와 관련한 냉ㆍ난방문제, 자동화와 관련한 구조적 문제, 광 투과량, 탄산가스 시비, 방제 등 여러 가지 측면에서 연구가 활발히 진행되고 있다. (중략)

  • PDF

드라이아이스를 이용한 딸기재배 온실의 이산화탄소 농도변화 (Veriations of Carbon Dioxide Concentration in a Strawberry Greenhouse Using Dry ice)

  • 백이;강석원;장재경;권진경
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.182-188
    • /
    • 2020
  • 최근에 딸기, 파프리카 등 시설과채류 재배에서 수확량 증대를 위하여 탄산가스를 시비하는 추세로 변화하고 있다. 본 연구에서는 석유화학, 주정공장 등에서 부산물로 발생되는 이산화탄소를 포집하여 정제한 후 작물재배온실에 이용하는 것이 목표이다. 이 목표를 달성하기 위한 방법으로는 드라이아이스 저장 및 탄산가스 공급이 주요하게 적용되고 있다. 드라이아이스 특성은 삼중점 이하의 온도와 압력에서 CO2는 고체나 기체가 되며 고체는 -78.5℃와 대기압에서는 액체 상태를 거치지 않고 바로 기체로 승화되며 강력한 냉각효과를 볼 수 있다. 온도에 따른 드라이아이스의 소비량은 온도가 5℃, 10℃, 15℃, 20℃일 때 각각 0.983kg/일, 2.358kg/일, 5.102kg/일, 7.035kg/일 소비가 되었고 CO2의 농도는 1,102ppm, 1,481ppm, 1,677ppm, 1,855ppm으로 나타났다. 시험온실에서의 드라이아이스 소모량은 시간당 약 0.9kg이 감소하는 것으로 나타났고 드라이아이스를 공급하기 전 9시에 온실내부의 CO2농도는 517ppm이었으며, 공급 후 10시 1,519ppm, 11시 1,651ppm, 12시 1,690ppm으로 증가한 후 일정한 수준을 유지하였다. 향후, 본 연구결과를 기반으로 작물에 필요한 탄산가스 공급 영역을 확장하여 공급조건을 도출하여 농가소득을 높이는데 기여하고자 하였다.

플라스틱 온실 내 이산화탄소 시비에 따른 토마토 생육과 생체 반응 및 Plant-induced Electrical Signal 간 관계 분석 (Analysis of Relationship between Tomato Growth, Vital Response, and Plant-induced Electrical Signal in a Plastic Greenhouse due to Carbon Dioxide Enrichment Treatment)

  • 구희웅;이규원;송욱진;김도현;박현준;박경섭
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.484-491
    • /
    • 2023
  • 토마토는 전세계적으로 많이 재배되는 시설 원예작물로 높은 생산량과 생산액을 차지하고 있다. 저온기 온실 환기를 최소화하는 상황에서 CO2 시비는 토마토 광합성 속도와 수확량을 높이기 위해 많이 사용한다. PIES는 작물 내 저항값즉임피던스값을 측정하는 원리를 원용하여 환경 변화에 따른 작물의 생체 반응 변화를 모니터링하는 기술로 활용이 가능하다. 본 연구는 온실 토마토에서 CO2 시비에 따른 토마토의 생육 데이터와 생체정보 및PIES 간의 연관성을 구명하기 위해 수행되었다. 오전에 CO2 처리한 작물의 생육은 무처리 구에 비해 경직경을 제외한 모든항목에서 유의적으로 좋았고, PIES도 높게 나왔다. 연속적으로 CO2 시비한 작물의 생육도 처리구에서 좋았고 생체 반응 중 엽록소 형광과 광합성은 유의한 차이는 없었다. 하지만PIES와 엽록소지수는 CO2 처리구에서 높은 수치를 보였다. CO2 시비가 PIES와 직접적인 관계가 있기보다는 시비를 통해 작물의 생육량이 상승하였고, 높아진 엽면적으로 인해 증산량이 증가되어 수분흡수가 많아졌고, 유관속 임피던스를 측정하는 PIES에 반영된 것으로 보인다. 이를 통해 본 연구는 PIES가 환경 변화에 따른 작물 모니터링에 활용할 수 있음을 시사하며, PIES가 작물의 변화를 비파괴적으로 연속적으로 모니터링할 수 있는 유용한 방법이다.

ERRATUM : 반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교 (ERRATUM : Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation)

반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교 (Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation)

  • 최은영;정영애;안승현;장동철;김대현;이동수;권진경;우영회
    • 생물환경조절학회지
    • /
    • 제30권4호
    • /
    • pp.401-409
    • /
    • 2021
  • 본 연구는 반밀폐형 토마토 재배 온실에서 광합성율 극대화를 위한 적정 탄산가스 시비 농도를 구명하고자 광합성 모델을 이용하여 잎의 최대 카복실화율(Vcmax), 최대 전자전달속도(Jmax), 열파괴, 잎 호흡 등을 계산하고 실제 측정값과 비교하였다. 다양한 광도(PAR 200µmol·m-2·s-1 to 1500µmol·m-2·s-1)와 온도(20℃ to 35℃) 조건에서 CO2 농도에 대한 A-Ci curve는 광합성 측정 기기를 사용하여 측정하였고, 모델링 방정식으로 아레니우스 함수값(Arrhenius function), 순광합성율(net CO2 assimilation, An), 열파괴(thermal breakdown), Rd(주간의 잎호흡)를 계산하였다. 엽온이 30℃ 이상으로 상승하였을 때 Jmax, An 및 thermal breakdown 예측치가 모두 감소하였고, 예측 Jmax의 가장 최고점은 엽온 30℃였으며 그 이상의 온도에서는 감소하였다. 생장점 아래 5번째 잎의 광합성율은 PAR 200-400µmol·m-2·s-1 수준에서는 CO2 600ppm, PAR 600-800µmol·m-2·s-1 수준에서는 CO2 800ppm, PAR 1000µmol·m-2·s-1 수준에서는 CO2 1000ppm, PAR 1200-1500µmol·m-2·s-1 수준에서는 CO2 1500ppm을 공급했을 때 포화점에 도달하였다. 앞으로 광합성 모델식을 활용하여 과채류 온실 재배 시 광합성을 높일 수 있는 탄산시비 농도를 추정할 수 있을 것으로 판단된다.

온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교 (Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses)

  • 정영애;장동철;권진경;김대현;최은영
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.221-229
    • /
    • 2022
  • 본 연구는 환경측정용 센서 위치에 따른 온실 환경의 공간·수직적 특성을 조사하고 온실 종류에 따른 온도, 광도 및 CO2 농도 간의 상관관계를 구명하고자 수행하였다. 벤로형 온실의 공간적인 5지점을 선정한 후 각 지점에서 대표적 작물의 수직적 높이 4지점과 지면부, 지붕 공간에 온도, 상대습도, CO2, 엽온 및 광센서를 설치하였다. 벤로형 온실과 반밀폐형 온실에서 온도, 광도 및 CO2 농도 변화의 관계성을 Curve Expert Professional 프로그램을 이용하여 비교하였다. 벤로형 온실의 공간적 위치에 따른 편차는 CO2 농도가 다른 요인보다 큰 것으로 나타났다. CO2 농도는 평균 465-761µmol·mol-1 범위였고, 편차가 가장 큰 시간대는 오후 5시였으며, 최고 농도는 액화 탄산가스 공급장치의 메인 배관(50Ø)과 가까운 위치인 중앙 후부(Middle End, 4ME)에서 646µmol·mol-1, 최저농도는 좌측 중앙(Left Middle, 5LM)에서 436µmol·mol-1이었다. 수직적 위치에 따른 편차는 온도와 상대습도가 다른 요인보다 큰 것으로 나타났다. 평균 기온의 편차가 가장 큰 시간대는 오후 2시대이며, 최고 기온은 작물 위 공기층(Upper Air, UA)에서 26.51℃, 최저 기온은 작물의 하단부(Lower Canopy, LC)에서 25.62℃였다. 평균 상대습도의 편차가 가장 큰 시간대는 오후 1시대로 나타났으며, 최고 습도는 LC에서 76.90%, 최저 습도는 UA에서 71.74%이다. 각 시간대에 평균 CO2 농도가 가장 높은 수직적 위치는 지붕 공간 공기층(Roof Air, RF)과 시설 내 지면(Ground, GD)이었다. 온실 내 온도, 광도 및 CO2 농도의 관계성은 반밀폐형 온실의 경우 결정계수(r2)가 0.07, 벤로형 온실은 0.66이었다. 결과를 종합하여 볼 때, 온실 내 CO2 농도는 공간적 분포, 온도와 습도는 작물의 수직적 분포 차이를 측정하여 분석할 필요가 있고 환기율이 낮은 반밀폐형 온실의 경우 목표 CO2 시비 농도가 일반 온실과 다르게 설정해야 할 것으로 판단된다.

온실 난방 개시온도와 CO2 시비 농도가 애호박의 생육과 수량에 미치는 영향 (Effects of Heating Initiative Temperature and CO2 Fertilizing Concentration on the Growth and Yield of Summer Squash in a Greenhouse)

  • 구희웅;김은지;나해영;박경섭
    • 생물환경조절학회지
    • /
    • 제31권4호
    • /
    • pp.468-475
    • /
    • 2022
  • 본 연구는 난방 개시 온도와 CO2 시비의 효율을 알아보기 위해 수행되었다. 난방 개시 온도 실험은 9℃, 12℃, 15℃로 구분하여 목표 온도보다 낮아지면 전기 온열기구가 작동하게 하였다. CO2 시비 농도 실험은 액화탄산가스를 이용하여 무처리, 500µmol·mol-1, 800µmol·mol-1으로 7시부터 12시까지 처리하였다. 생육 특성으로 초장, 경경, 엽수, 엽면적, 생체중, 건물중을 조사하였고, 200g 넘는 과실만을 대상으로 수량을 조사하여 경제성 분석을 하였다. 상위엽에 대한 광합성 측정을 하여 처리에 따른 포화점을 산출하였다. 애호박의 광포화점은 587µmol·m-2·s-1이였고 CO2 포화점은 702µmol·mol-1 이였다. CO2에 의한 Amax값은 9℃, 12℃, 15℃, 500µmol·mol-1, 800µmol·mol-1 순으로 13.4, 17.8, 17.2, 19.6, 17.5µmol CO2·m-2·s-1이었다. 온도 실험에서 9℃는 생육과 착과가 정상적으로 이루어지지 않았다. 12℃와 15℃는 9℃보다 높았지만 생육과 생산에서 유의미한 차이를 보이지 않았다. CO2 농도 실험은 생육에서 처리구간 유의한 차이를 보이지 않았지만 800µmol·mol-1의 생산성이 가장 좋았다. 이상의 결과를 종합적으로 보면 난방 개시 온도는 15℃인 것은 작물 생육과 생산에는 좋았지만 12℃와 유의적인 차이가 없어 경제적 측면에서 난방 개시 온도를 12℃로 설정하는 것이 좋은 것으로 보이며, CO2 시비 농도 800µmol·mol-1를 유지하는 것이 생산량 증가에 효과적이었다.