DOI QR코드

DOI QR Code

Effects of Heating Initiative Temperature and CO2 Fertilizing Concentration on the Growth and Yield of Summer Squash in a Greenhouse

온실 난방 개시온도와 CO2 시비 농도가 애호박의 생육과 수량에 미치는 영향

  • Goo, Hei Woong (Department of Horticulture, Mokpo National University) ;
  • Kim, Eun Ji (Department of Horticulture, Mokpo National University) ;
  • Na, Hae Yeong (Department of Horticulture, Mokpo National University) ;
  • Park, Kyoung Sub (Department of Horticulture, Mokpo National University)
  • Received : 2022.10.14
  • Accepted : 2022.10.26
  • Published : 2022.10.31

Abstract

This study was conducted to find out the efficiency of heating initiative temperature and carbon dioxide fertilization in summer squash (Cucurbita moschata D.). The heating start temperature experiment was performed at 9℃, 12℃, and 15℃ using an electric heater and operated when the temperature was lower than the target temperature. The CO2 fertilization concentration experiment was performed from 7 to 12 with the control, 500 µmol·mol-1, and 800 µmol·mol-1 using liquefied carbon dioxide. Investigation items were plant height, stem diameter, number of leaves, leaf area, fresh weight, dry weight, also economic analysis was conducted by surveying only fruits exceeding 100 g. Photosynthesis was measured for the upper leaf position to calculate the saturation point according to the control. The photo saturation point was 587 µmol·m-2·s-1, and the CO2 saturation point was 702 µmol·mol-1. Amax values by carbon dioxide were 13.4, 17.8, 17.2, 19.6, and 17.5 µmolCO2·m-2·s-1 in the order of 9℃, 12℃, 15℃, 500 µmol·mol-1, and 800 µmol·mol-1. In the temperature experiment, 9℃ in growth did not grow normally and no fruiting was performed. 12℃ and 15℃ were higher than 9℃, but there was no significant difference in growth and production. The CO2 fertilization experiment showed no significant difference between the treatment in growth, but the productivity of 800 µmol·mol-1 was the best. Comprehensively, the heating initiative temperature of 15℃ was good for crop growth and production, but there is no significant difference from 12℃, so it is good to set the heating start temperature to 12℃ economically, and maintaining of 800 µmol·mol-1 is effective in increasing production.

본 연구는 난방 개시 온도와 CO2 시비의 효율을 알아보기 위해 수행되었다. 난방 개시 온도 실험은 9℃, 12℃, 15℃로 구분하여 목표 온도보다 낮아지면 전기 온열기구가 작동하게 하였다. CO2 시비 농도 실험은 액화탄산가스를 이용하여 무처리, 500µmol·mol-1, 800µmol·mol-1으로 7시부터 12시까지 처리하였다. 생육 특성으로 초장, 경경, 엽수, 엽면적, 생체중, 건물중을 조사하였고, 200g 넘는 과실만을 대상으로 수량을 조사하여 경제성 분석을 하였다. 상위엽에 대한 광합성 측정을 하여 처리에 따른 포화점을 산출하였다. 애호박의 광포화점은 587µmol·m-2·s-1이였고 CO2 포화점은 702µmol·mol-1 이였다. CO2에 의한 Amax값은 9℃, 12℃, 15℃, 500µmol·mol-1, 800µmol·mol-1 순으로 13.4, 17.8, 17.2, 19.6, 17.5µmol CO2·m-2·s-1이었다. 온도 실험에서 9℃는 생육과 착과가 정상적으로 이루어지지 않았다. 12℃와 15℃는 9℃보다 높았지만 생육과 생산에서 유의미한 차이를 보이지 않았다. CO2 농도 실험은 생육에서 처리구간 유의한 차이를 보이지 않았지만 800µmol·mol-1의 생산성이 가장 좋았다. 이상의 결과를 종합적으로 보면 난방 개시 온도는 15℃인 것은 작물 생육과 생산에는 좋았지만 12℃와 유의적인 차이가 없어 경제적 측면에서 난방 개시 온도를 12℃로 설정하는 것이 좋은 것으로 보이며, CO2 시비 농도 800µmol·mol-1를 유지하는 것이 생산량 증가에 효과적이었다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421003-04, 421041-03).

References

  1. Ahn C.K., Y.W. Choi, B.G. Son, and J.S. Kang 2003, Production of high quality tomato seedlings by CO2 and temperature control in glass house. Hortic Environ Biotechnol 44:182-186. (in Korean)
  2. Dorais M. 2003, The use of supplemental lighting for vegetable crop production: light intensity, crop response, nutrition, crop management, cultural practices. Can Greenhouse Conf 9:1-8.
  3. Heuvelink E., and H. Challa 1989, Dynamic optimization of artificial lighting in greenhouses. Acta Hortic 260:401-402. doi:10.17660/ActaHortic.1989.260.26
  4. Jeon Y.H., E.J. Kim, S.H. Ju, D.J. Myung, K.H. Kim, S.J Lee, and H.Y. Na 2022, Comparison of climate between a semiclosed and conventional greenhouse in the winter season. Hortic Sci Technol 40:400-409. (in Korean) doi:10.7235/HORT.20220036
  5. Jeong Y.A., D.C. Jang, J.K. Kwon, D.H. Kim, and E.Y. Choi 2022, Analysis of spatial and vertical variability of environmental parameters in a greenhouse and comparison of carbon dioxide concentration in two different types of greenhouses. J Bio-Env Con 31:221-229. (in Korean) doi:10.12791/KSBEC.2022.31.3.221
  6. Kim P.G., and E.J. Lee 2001a, Eco-physiology of photosynthesis 1: Effects of light intensity and intercellular CO2 pressure on photosynthesis. Korean J Agric For Meteorol 3:126-133.
  7. Kim P.G., and E.J. Lee 2001b, Eco-physiology of photosynthesis 3: Photosynthetic responses to elevated atmospheric CO2 concentration and temperature. Korean J Agric For Meteorol 3:238-243.
  8. Kim S.K., J.H. Lee, H.J. Lee, S.G. Lee, B.H. Mun, S.W. An, and H.S. Lee 2018, Development of prediction growth and yield models by growing degree days in hot pepper. Protected Hort Plant Fac 27:424-430. (in Korean) doi:10.12791/KSBEC.2018.27.4.424
  9. Ko K.D., and I.H. Cho 2013, Protected horticulture of Korea. RDA, Jeonju, Korea, p 64. (in Korean)
  10. KOSIS 2020, Agriculture Crop Production Survey: Vegetable Production. https://kosis.kr. (in Korean)
  11. Kume A., and Y. Ino 1993, Comparison of eco-physiological responses to heavy snow in two varieties of Acuba japonica with different areas of distribution. Ecol Res 8:111-121. doi:10.1007/BF02348523
  12. Kwon J.K., I.H. Yu, K.S. Park, J.H. Lee, J.H. Kim, J.S. Lee, and D.S. Lee 2018, Supplemental lighting by HPS and PLS lamps affects growth and yield of cucumber during low radiation period. Protected Hort Plant Fac 27:400-406. (in Korean) doi:10.12791/KSBEC.2018.27.4.400
  13. Lakso A.N., and W.M. Kliewer 1975, The influence of temperature on malic acid metabolism in grape berries. Plant Physiol 56:370-372. doi:10.1104/pp.56.3.370
  14. Lee I.B., S.B. Kang, and J.M. Park 2008, Effect of elevated carbon dioxide concentration and temperature on yield and fruit characteristics of tomato (Lycopersicon esculentum Mill.). Korean J Environ Agric 27:428-434. (in Korean) doi:10.5338/KJEA.2008.27.4.428
  15. Lee J.M., Y.S. Kim, I.S. Kim, J.G. Seo, H.H. Seo, Y.J. Yang, D.G. Oh, Y.R. Yeoung, H.W. Young, J.Y. Yoon, S.G. Lee, Y.B. Lee, J.M. Lee, H.J. Jeon, G.W. Choi, and J.M. Choi 2014, Vegetable Sciences General. Hyangmunsa, Seoul, Korea, pp 159-167. (in Korean)
  16. NeSmith D.S. 1997, Summer squash (Cucurbita pepo L.) leaf number as influenced by thermal time. Sci Hortic 68:219-225. doi:10.1016/S0304-4238(96)00952-1
  17. Park K.S., S.K. Kim, Y.Y. Cho, M.K. Cha, D.H. Jung, and J.E. Son 2016, A coupled model of photosynthesis and stomatal conductance for the ice plant (Mesembryanthemum crystallinum L.), a facultative CAM plant. Hortic Environ Biotechnol 57:259-265. doi:10.1007/s13580-016-0027-7
  18. Park K.S., Y.C. Huh, H.E. Lee, D.K. Park, and J.K. Kwon 2010, Effect of plastic bagging cultivation of summer squash (Cucurbita moschata) on improvement of quality and extension of storage period. J Bio-Env Con 19:372-376. (in Korean)
  19. Peter R.H., and A.J. Peter 1978, Effects of greenhouse CO2 enrichment on the yield and photosynthetic physiology of tomato plants. Can J Plant Sci 58:801-817. doi:10.4141/cjps78-119.
  20. Rowan F.S., and S.K. David 2007, The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086-1106. doi:10.1111/j.1365-3040.2007.01682.x
  21. Wi S.H., K.H. Yeo, H.S. Choi, I.H. Yu, H.J. Lee, and H.J. Lee 2021, Effects of low air temperature and light intensity on yield and quality of tomato at the early growth stage. J Bio-Env Con 30:448-454. (in Korean) doi:10.12791/KSBEC.2021.30.4.448