• 제목/요약/키워드: 타이어 공명 소음

검색결과 8건 처리시간 0.02초

타이어 공명 소음 저감체 개발 (Tire Cavity Noise Reducing Material Development)

  • 이상주;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구 (The Study of Reduction Technologies of Tire Cavity Resonance Noise)

  • 방명제;최승일;추권철;이홍진;손창억
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

타이어의 첫 번째 공기공동 공명에 관한 유한요소해석 (FE Analysis for Fundamental Air-cavity Resonant Frequency of Tire)

  • 김용우;방성현
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.685-692
    • /
    • 2009
  • Vehicle interior noise is the results of numerous sources of excitation. One source involving tire pavement interaction is the tire cavity resonance and the forcing it provides to the vehicle spindle. Using a simplified model for the tire acoustic cavity system only, we formulated finite element equation to predict the fundamental acoustic cavity resonant characteristics inside tire-wheel assembly of undeformed and deformed tire. Combining the finite element analysis with experimental verification, we explained the acoustic characteristics theoretically. Especially, we have shown that the difference between the first two resonant frequencies increases as the deformation of deformed tire increases.

타이어의 첫 번째 공기공동 공명에 관한 유한요소해석 (FE Analysis for Fundamental Air-Cavity Resonant Frequency of Tire)

  • 김용우;방성현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.551-556
    • /
    • 2009
  • Vehicle interior noise is the results of numerous sources of excitation. One source involving tire pavement interaction is the tire cavity resonance and the forcing it provides to the vehicle spindle. Using a simplified model for the tire acoustic cavity system only, we formulated finite element equation to predict the fundamental acoustic cavity resonant characteristics inside tire-wheel assembly of undeformed and deformed tire. Combining the finite element analysis with experimental verification, we explained the acoustic characteristics theoretically. Especially, we have shown that the difference between the first two resonant frequencies increases as the deformation of tire due to vertical load increases.

  • PDF

타이어 공동의 공명에 의한 차량 실내음 전달경로 연구 (Study on Interior Noise Transfer Path Analysis by Tire Cavity Resonance)

  • 이상주;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.129-133
    • /
    • 2005
  • Vibration transmitted through rolling tire is a major source of road noise in vehicle interior noise on the range of low frequency.($0{\sim}500Hz$) Among various road noises, tire cavity noise has very peak on $200{\sim}250Hz$. And generally it is generated by cavity resonance of tire. In this paper, tire cut-sample is used to calculate the tire cavity frequency. Cavity resonance frequency of tire is measured through vertical/tangential forces at load cell of axle using drum cleat impact. This method is useful to find cavity peak because measured forces do not have complex peaks. And changing the test conditions (air inflation, loads), tire cavity resonance characteristics are identified. Finally, vehicle interior noise is measured as tire/vehicle are changing. As difference of tire vertical force is bigger, interior noise level is higher at cavity frequency. Also we can assume that vehicle sensitivity is important factor at tire cavity noise.

  • PDF

타이어-휠가드 공간의 음장모드와 고주파성 로드노이즈의 상관성 연구 (A study on the relationship between acoustic modes in tire-wheel guard space and high frequency road noise)

  • 이종현;구요천;이진모
    • 한국음향학회지
    • /
    • 제35권4호
    • /
    • pp.288-294
    • /
    • 2016
  • 타이어와 휠가드 사이의 공간은 타이어 패턴음의 전달경로가 된다. 본 논문에서는 타이어-휠가드 공간에서 발생하는 음향현상을 음장모드 분석과 휠 가드 표면에서 음압분포 가시화를 통해 규명하였다. 타이어 패턴음 저감을 위해 음향학적 댐퍼 역할을 수행하는 캐비티를 휠가드 표면상에 적용하였다. 실내소음은 2 dB(A) 감소하였는데, 본 연구에서 다룬 소음저감방법은 완성차 단계에서 원가/중량의 증가없이 실내음질을 개선하는 효과적인 방안이 될 것이라고 판단된다.

축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성 (3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle)

  • 김용우;남진영
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.