• Title/Summary/Keyword: 타원곡선암호시스템

Search Result 135, Processing Time 0.026 seconds

Differential Power Analysis Attack on Cryptosystem adopted NAF Algorithm as a Secret Key Recoding Method (비밀키를 NAF로 사용하는 암호시스템의 차분 전력분석 공격)

  • Ahn Mahn-Ki;Ha Jae-Cheol;Lee Hoon-Jae;Moon Sang-Jae
    • Journal of Internet Computing and Services
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • The power analysis attack is a physical attack which can be applied to the cryptosystems such as smartcard. We try to experimental attack to a smart card which implemented Elliptic Curve Cryptosystem adopting NAF algorithm as a secret key recording method. Our differential power analysis attack is a potential threat to that implementation. The attacker measures the power traces during the multiplication with secret key bits in a target smart card and the multiplication with the guessed bits in other experimental one. The comparison of these two traces gives a secret bit, which means that attacker can find all secret key bits successively.

  • PDF

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.

A Novel Arithmetic Unit Over GF(2$^{m}$) for Reconfigurable Hardware Implementation of the Elliptic Curve Cryptographic Processor (타원곡선 암호프로세서의 재구성형 하드웨어 구현을 위한 GF(2$^{m}$)상의 새로운 연산기)

  • 김창훈;권순학;홍춘표;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.8
    • /
    • pp.453-464
    • /
    • 2004
  • In order to solve the well-known drawback of reduced flexibility that is associate with ASIC implementations, this paper proposes a novel arithmetic unit over GF(2$^{m}$ ) for field programmable gate arrays (FPGAs) implementations of elliptic curve cryptographic processor. The proposed arithmetic unit is based on the binary extended GCD algorithm and the MSB-first multiplication scheme, and designed as systolic architecture to remove global signals broadcasting. The proposed architecture can perform both division and multiplication in GF(2$^{m}$ ). In other word, when input data come in continuously, it produces division results at a rate of one per m clock cycles after an initial delay of 5m-2 in division mode and multiplication results at a rate of one per m clock cycles after an initial delay of 3m in multiplication mode respectively. Analysis shows that while previously proposed dividers have area complexity of Ο(m$^2$) or Ο(mㆍ(log$_2$$^{m}$ )), the Proposed architecture has area complexity of Ο(m), In addition, the proposed architecture has significantly less computational delay time compared with the divider which has area complexity of Ο(mㆍ(log$_2$$^{m}$ )). FPGA implementation results of the proposed arithmetic unit, in which Altera's EP2A70F1508C-7 was used as the target device, show that it ran at maximum 121MHz and utilized 52% of the chip area in GF(2$^{571}$ ). Therefore, when elliptic curve cryptographic processor is implemented on FPGAs, the proposed arithmetic unit is well suited for both division and multiplication circuit.

TinyECCK : Efficient Implementation of Elliptic Curve Cryptosystem over GF$(2^m)$ on 8-bit Micaz Mote (TinyECCK : 8 비트 Micaz 모트에서 GF$(2^m)$상의 효율적인 타원곡선 암호 시스템 구현)

  • Seo, Seog-Chung;Han, Dong-Guk;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.9-21
    • /
    • 2008
  • In this paper, we revisit a generally accepted opinion: implementing Elliptic Curve Cryptosystem (ECC) over GF$(2^m)$ on sensor motes using small word size is not appropriate because partial XOR multiplication over GF$(2^m)$ is not efficiently supported by current low-powered microprocessors. Although there are some implementations over GF$(2^m)$ on sensor motes, their performances are not satisfactory enough due to the redundant memory accesses that result in inefficient field multiplication and reduction. Therefore, we propose some techniques for reducing unnecessary memory access instructions. With the proposed strategies, the running time of field multiplication and reduction over GF$(2^{163})$ can be decreased by 21.1% and 24.7%, respectively. These savings noticeably decrease execution times spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations (Signing and verification) by around $15{\sim}19%$.

A Scalar Multiplication Algorithm Secure against Side-Channel Attacks for Koblitz Curve Cryptosystems (암호공격에 안전한 Koblitz 타원곡선 암호시스템의 스칼라 곱셈 알고리즘)

  • Jang, Yong-Hee;Takagi, Naofumi;Takagi, Kazuyoshi;Kwon, Yong-Jin
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.356-360
    • /
    • 2006
  • Recently, many power analysis attacks have been proposed. Since the attacks are powerful, it is very important to implement cryptosystems securely against the attacks. We propose countermeasures against power analysis attacks for elliptic curve cryptosystems based on Koblitz curves (KCs), which are a special class of elliptic curves. That is, we make our countermeasures be secure against SPA, DPA, and new DPA attacks, specially RPA, ZPA, using a random point at each execution of elliptic curve scalar multiplication. And since our countermeasures are designed to use the Frobenius map of KC, those are very fast.

  • PDF

Design of a systolic radix-4 finite-field multiplier for the elliptic curve cryptography (타원곡선 암호를 위한 시스톨릭 Radix-4 유한체 곱셈기 설계)

  • Park Tae-Geun;Kim Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.40-47
    • /
    • 2006
  • The finite-field multiplication can be applied to the elliptic curve cryptosystems. However, an efficient algorithm and the hardware design are required since the finite-field multiplication takes much time to compute. In this paper, we propose a radix-4 systolic multiplier on $GF(2^m)$ with comparative area and performance. The algorithm of the proposed standard-basis multiplier is mathematically developed to map on low-cost systolic cells, so that the proposed systolic architecture is suitable for VLSI design. Compared to the bit-parallel, bit-serial and systolic multipliers, the proposed multiplier has relatively effective high performance and low cost. We design and synthesis $GF(2^{193})$ finite-field multiplier using Hynix $0.35{\mu}m$ standard cell library and the maximum clock frequency is 400MHz.

Design of ECC Scalar Multiplier based on a new Finite Field Division Algorithm (새로운 유한체 나눗셈기를 이용한 타원곡선암호(ECC) 스칼라 곱셈기의 설계)

  • 김의석;정용진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.726-736
    • /
    • 2004
  • In this paper, we proposed a new scalar multiplier structure needed for an elliptic curve cryptosystem(ECC) over the standard basis in GF(2$^{163}$ ). It consists of a bit-serial multiplier and a divider with control logics, and the divider consumes most of the processing time. To speed up the division processing, we developed a new division algorithm based on the extended Euclid algorithm. Dynamic data dependency of the Euclid algorithm has been transformed to static and fixed data flow by a localization technique, to make it independent of the input and field polynomial. Compared to other existing scalar multipliers, the new scalar multiplier requires smaller gate counts with improved processor performance. It has been synthesized using Samsung 0.18 um CMOS technology, and the maximum operating frequency is estimated 250 MHz. The resulting performance is 148 kbps, that is, it takes 1.1 msec to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption/decryption, and key exchanges in real time environments.

Design of Securer Electronic payment system based on ECC algorithm (타원 곡선 암호를 이용한 안전한 메일 기반 전자지불시스템 설계)

  • 김성일;최문석;신병철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.817-820
    • /
    • 2003
  • With a great improvement of computers and Network communication skills, we can exchange information quickly. There have been many researches on the subject how to guarantee the information security by security mechanism and cryptography schemes. Nowadays, many people in this area show their interest in money transfer systems between accounts, which can provide a secure mechanism in which people can send money to the legitimate party or person safe. However, we have teamed many ways to distort messages and repudiate the malicious activity in mail systems based on SSL mechanism. It is very likely that important information which must be kept in secret is laid exposed to un_authorized user. Accordingly, to provide stronger security service, researches on electronic payment system which tan guarantee the security characteristics such as confidentiality, integrity, user authentication, Non-repudiation, are strongly needed. In this paper, we analize the characteristics of the previous researches in this field, and also propose a securer electronic payment system based on ECC algorithm.

  • PDF

ID-based Payment Protocol for Mobile Electronic Commerce (모바일 전자상거래를 위한 ID 기반 지불 프로토콜)

  • 이현주;김선신;이충세
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.405-413
    • /
    • 2004
  • Design an efficient and secure electronic payment system is important for M-Commerce. In this paper, we propose an efficient Micro-Payment Protocol that allows multiple transactions using ID-based public key cryptosystem. Current PayWord system requires to generate certificate of the vendor for each transaction. In this paper, we use a session key instead of certificate key generated by Weil Pairing which use an Elliptic Curve Cryptosystem over finite field $F_q$ for transactions Therefore, it is more secure in Known key attacks as well as Man-in-the-middle attacks.

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.