• 제목/요약/키워드: 키워드-기반 시스템

검색결과 520건 처리시간 0.031초

감성기반 음악.이미지 검색 추천 시스템 설계 및 구현 (A Design and Implementation of Music & Image Retrieval Recommendation System based on Emotion)

  • 김태연;송병호;배상현
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.73-79
    • /
    • 2010
  • 감성 지능형 컴퓨팅은 컴퓨터가 학습과 적응을 통하여 인간의 감성을 처리할 수 있는 감성인지 능력을 갖는 것으로 보다 효율적인 인간과 컴퓨터의 상호 작용을 가능하게 한다. 감성 정보들 중 시각과 청각 정보인 음악 이미지는 짧은 시간에 형성되고 기억에 오랫동안 지속되기 때문에 성공적인 마케팅에 있어서 중요한 요인으로 꼽히고 있으며, 인간의 정서를 이해하고 해석하는데 있어서 매우 중요한 역할을 한다. 본 논문에서는 사용자의 감성키워드(짜증, 우울, 차분, 기쁨)를 고려하여 매칭된 음악과 이미지를 검색하는 시스템을 구축하였다. 제안된 시스템은 인간의 감성을 4단계 경우로 상황을 정의하며, 정규화 된 음악과 이미지를 검색하기 위해 음악 이미지 온톨로지와 감성 온톨로지를 사용하였으며, 이미지의 특징정보를 추출, 유사성을 측정하여 원하는 결과를 얻게 하도록 하였다. 또한, 이미지 감성인식정보를 분류하기위해 대응일치분석과 요인분석을 통한 성컬러와 감성어휘를 하나의 공간에 매칭하였다. 실험결과 제안된 시스템은 4가지 감성상태에 대해 82.4%의 매칭율를 가져올 수 있었다.

e-비즈니스를 위한 지능형 통합 레지스트리 시스템 설계 (The design of Intelligent and Integrated Registries System for e-Business)

  • 유정연;김계용;이규철
    • 한국전자거래학회지
    • /
    • 제8권2호
    • /
    • pp.63-76
    • /
    • 2003
  • e-비즈니스 프레임워크에서 가장 핵심적인 역할을 담당하는 것은 e-비즈니스 수행에 필요한 모든 메타데이타 정보들을 관리하는 레지스트리이다. 그러나, 실제적인 e-비즈니스 적용은 아직까지 어렵다. 즉 e-비즈니스 정보들은 물리적 또는 논리적으로 분산되고 이질적인 레지스트리들 안에 저장/관리되며 , 저장된 정보에 대해서는 키워드 기반의 검색 방법을 이용한다. 이것은 실제 e-비즈니스 수행에 있어서 거래에 필요한 비즈니스 정보 검색의 어려움을 제공한다. 이러한 문제점에 대한 인식은 확산되고 있으며, 이를 해결하기 위한 분산된 다양한 레지스트리의 통합과 체계적인 e-비즈니스 정보의 정의 및 지능적인 발견 기술의 적용이 요구된다. 본 논문에서는 이러한 문제점을 해결하기 위해 지능형 통합 e-비즈니스 레지스트리 시스템을 제안하였으며, 레지스트리 시스템들간의 통합 기능을 제공하는 레지스트리 통합 질의 관리기를 구현하였다. 또한, 향후 개발 할 지능형 레지스트리 에이전트 시스템의 구조를 정의하였다.

  • PDF

웹 크롤러를 이용한 자동 패치 정보 수집 시스템 (Automatic Patch Information Collection System Using Web Crawler)

  • 김용건;나사랑;김환국;원유재
    • 정보보호학회논문지
    • /
    • 제28권6호
    • /
    • pp.1393-1399
    • /
    • 2018
  • 다양한 소프트웨어를 사용하는 기업은 보안 업체에서 제공하는 패치관리시스템을 사용하여 소프트웨어의 취약점을 일괄적으로 관리해서 보안 수준을 높인다. 시스템 관리자는 최신 소프트웨어 버전을 유지하기 위해 신규 패치 정보를 제공하는 벤더 사이트를 모니터링 하지만 패치를 제공하는 주기가 불규칙적이고 웹 페이지 구조가 다르기 때문에 패치 정보를 검색하고 수집하는데 많은 비용과 모니터링 시간이 소요된다. 이를 줄이기 위해 키워드나 웹 서비스를 기반으로 패치 정보 수집을 자동화하는 연구가 진행되었으나 벤더 사이트에서 패치 정보를 제공하는 구조가 규격화되어 있지 않기 때문에 특정 벤더 사이트에서만 적용 가능했다. 본 논문에서는 패치 정보를 제공하는 벤더 사이트 구조와 특징을 분석하고 패치 정보 수집에 소모되는 비용과 모니터링 시간을 줄이기 위해서 웹 크롤러를 이용해 패치 정보 수집을 자동화하는 시스템을 제안한다.

뉴스 데이터 기반 농업 가뭄 전조 감지 및 확산 분석 (Detection and spread of agricultural drought warning based on news data)

  • 김민진;남원호;양미혜;이지완;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.339-339
    • /
    • 2023
  • 2018년도 연강수량은 1,386.9 mm로 평년 수준의 비가 내렸으나, 7-8월에 발생한 폭염 및 가뭄으로 인해 강원, 전남, 경북, 충남 지역에서 밭작물 중심으로 22,767 ha 피해가 발생하였다. 2019년도 연강수량은 1,171.9 mm로 평년보다 약 10% 적은 수준의 비가 내렸으며, 동일시기에 인천, 강원, 충남 지역에서 논·밭작물 중심으로 3,112 ha 피해가 발생하였다. 기후변화로 인해 강수량이 지역별로 편중되어 국지적 가뭄이 빈발하여 지역별로 가뭄의 영향, 피해, 체감 정도가 상이한 양상을 보이고 있다. 가뭄을 사전에 방지하기 위해서는 가뭄 모니터링과 선제적 대응이 중요하며, 현재 가뭄의 특징, 상황 등의 목적에 따라 다양한 형태의 가뭄 모니터링 시스템이 개발되고 있다. 가뭄의 피해와 영향 정도는 지역 간의 차이가 나타나 지역별로 가뭄을 체감하는 정도가 다르기 때문에 하나의 결과로 나타내기에는 어려움이 있다. 따라서, 가뭄의 발생 시기와 확산 정도를 분석하여 특보 발효 시점과 가뭄 대응 방안에 대한 기준 마련이 중요하다. 본 연구는 현대 사회에서 가장 중요한 요소로써 활용되고 있는 빅데이터 중 비정형 데이터로 분류되는 뉴스데이터와 논·밭의 가뭄을 나타내는 농업 가뭄과 관련된 데이터를 활용하여 농업 가뭄의 전조를 파악해보고자 한다. 2018년부터 2019년까지 전국을 대상으로 농업 가뭄에 관한 키워드 선정 후, 웹 크롤링을 통해 뉴스데이터를 수집해 논 가뭄과 밭 가뭄을 구별하여 각 지역에서 최초로 가뭄 기사가 발행된 시기와 지역별 기사의 빈도를 산출하였다. 뉴스데이터의 농업 가뭄 전조 감지 가능성을 파악하기 위해 국가가뭄정보통계집에서 논 물마름 시기와 밭 시듦 시기 자료를 활용하였다. 가뭄 피해 발생시기와 관련 기사 발행 시기 비교, 농업용수 대상 비상용수 지원 자료를 활용하여 실제 농업 가뭄확산 감지 여부를 분석하여 농업 가뭄 관련 뉴스데이터 간의 상관성을 분석하였다.

  • PDF

사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구 (An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining)

  • 이형일;김종우
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.47-73
    • /
    • 2020
  • KTX 차량은 수많은 기계, 전기 장치 및 부품들로 구성되어 있는 하나의 시스템으로 차량의 유지보수에는 상당히 많은 전문성과 유지보수 작업자들의 경험을 필요로 한다. 차량 고장발생 시 유지보수자의 지식과 경험에 따라 문제 해결의 시간과 작업의 질적 차이가 발생하며 그에 따른 차량의 가용율이 달라진다. 일반적으로 문제해결은 고장 매뉴얼을 기반으로 하지만 경험이 많고 능숙한 전문가의 경우는 이와 더불어 개인의 노하우를 접목하여 신속하게 진단하고 조치를 취한다. 이러한 지식은 암묵지 형태로 존재하기 때문에 후임자에게 완전히 전수되기 어려우며, 이를 위해 사례기반의 철도차량 전문가시스템을 개발하여 데이터화된 지식으로 바꾸려고 하는 연구들이 있어왔다. 하지만, 간선에 가장 많이 투입되고 있는 KTX 차량에 대한 연구나 텍스트의 특징을 추출하여 유사사례를 검색하는 시스템 개발은 아직 미비하다. 따라서, 본 연구에서는 이러한 차량 유지보수 전문가들의 노하우를 통해 수행된 고장들에 대한 진단과 조치 이력을 문제 해결의 사례로 활용하여 새롭게 발생하는 고장에 대한 조치가이드를 제공하는 지능형 조치지원시스템을 제안하고자 한다. 이를 위하여, 2015년부터 2017년동안 생성된 차량고장 데이터를 수집하여 사례베이스를 구축하였고, 차원축소 기법인 비음수 행렬 인수분해(NMF), 잠재의미분석(LSA), Doc2Vec을 통해 고장의 특징을 추출하여 벡터 간의 코사인 거리를 측정하는 방식으로 유사 사례를 검색하였으며, 위의 알고리즘에 의해 제안된 조치내역들 간 성능을 비교하였다. 분석결과, 고장 내역의 키워드가 적은 경우의 유사 사례 검색과 조치 제안은 코사인 유사도를 직접 적용하는 경우에도 좋은 성능을 낸다는 것을 알 수 있었고 차원 축소 기법들의 성능 비교를 통해 문맥적 의미를 보존하는 차원 축소 방식 중 Doc2Vec을 적용하는 것이 가장 좋은 성능을 나타낸다는 것을 알 수 있었다. 텍스트 마이닝 기술은 여러 분야에서 활용을 위한 연구들이 이루어지고 있는 추세이나, 본 연구에서 활용하고자 하는 분야처럼 전문적인 용어들이 다수이고 데이터에 대한 접근이 제한적인 환경에서 이러한 텍스트 데이터를 활용한 연구는 아직 부족한 실정이다. 본 연구는 이러한 관점에서 키워드 기반의 사례 검색을 보완하고자 텍스트 마이닝 기법을 접목하여 고장의 특징을 추출하는 방식으로 사례를 검색해 조치를 제안하는 지능형 진단시스템을 제시하였다는 데에 의의가 있다. 이를 통해 현장에서 바로 사용 가능한 진단시스템을 단계적으로 개발하는데 기초자료로써 시사점을 제공할 수 있을 것으로 기대한다.

컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색 (Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet)

  • 최준호;조미영;김판구
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.509-516
    • /
    • 2004
  • 의미기반 이미지 검색에서의 의미적 내용 인식은 주석 위주의 텍스트 정보를 이용하는 것이 일반적이다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사하여 쉽게 구현할 수 있으나, 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석 처리된 단어와 정확한 매칭이 없다면 검색할 수 없는 단점이 있었다. 이에 본 논문에서는 Ontology의 일종인 WordNet을 이용하여 깊이, 정보량, 링크 타입, 밀도 등을 고려한 단어간 의미 유사도를 측정하여 패턴 매칭의 문제점을 해결하고자 한다. 또한, 이미지의 컬러 분포 유사도를 측정하여 저차원 특징과 결합한 의미적 이미지 검색이 가능하도록 설계하였다. 제안된 검색 방안에 대해 'Microsoft Design Gallery Live'의 주석을 포함한 이미지를 대상으로 실험한 결과, 기존 의미기반 검색 시스템보다 향상된 결과를 확인하였다.

빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델 (Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment)

  • 김영수;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.600-608
    • /
    • 2017
  • 최근 인터넷의 급격한 확장에 따른 정보의 양이 기하급수적으로 증가하고 있다. 그러나 실제 사용자에게 필요한 정보는 극히 일부분으로 사용자가 원하는 정보를 찾는데 까지는 부가적인 시간과 노력이 요구된다. 따라서 검색어로 검색된 문서에 대한 유사도 평가를 통한 계층적 유사 정보와 검색 우선순위에 대한 정보를 제공할 필요성이 있다. 이를 위해서 검색어를 구성하고 있는 키워드의 동시 발생 빈도를 고려한 검색 문서에 대한 유사도를 기반으로 문서 클러스터를 구성하고 SVM을 적용한 빅 데이터 기반 계층적 유형 분류 모델을 제안한다. 계층적 분류방법과 SVM 분류기의 결합은 문서의 계층이 기하급수적으로 늘어나는 웹 문서의 경우에 높은 성능을 얻을 수 있다. 제안된 모델은 정확하고 신속한 검색을 제공하는 정보검색시스템의 응용 모델로 활용될 수 있다.

Wavelet을 이용한 내용기반 검색에 관한 연구 (A Study on Contents-based Retrieval using Wavelet)

  • 강진석;박재필;나인호;최연성;김장형
    • 한국정보통신학회논문지
    • /
    • 제4권5호
    • /
    • pp.1051-1066
    • /
    • 2000
  • 디지털 압축기술의 발달과 컴퓨팅 능력이 발전함에 따라서 많은 양의 이미지, 그래픽, 오디오, 비디오 정보가 인터넷을 통한 멀티미디어 시스템에서 활발히 이용되고 있다. 이에 따라 사용자가 원하는 멀티미디어 컨텐츠를 탐색하기 위한 다양한 검색기법이 요구되고 있으며, 특히 단순한 텍스트형 키워드에 의한 검색보다는 내용에 의한 검색 기법이 절실히 요구되고 있다. 본 논문에서는 여러 가지 전처리 과정을 통해 영상을 분류하고, 여기에 색상의 공간적, 질감적 특징을 선별적으로 적용함으로서 처리 효율을 높이면서 검색 성능을 증가시킬 수 있는 내용기반 색인 및 검색 알고리즘을 제안하였다. 또한, 특정 상표에 대한 내용기반 데이터 검색요청 및 수행 결과 분석을 통해 제안된 기법의 성능을 평가하였고, 그 결과를 기술하였다.

  • PDF

시각화 기반 모바일 라이프 로그 시맨틱 네트워크 연관 검색 시스템 (An Associative Search System for Mobile Life-log Semantic Networks based on Visualization)

  • 오근현;김용준;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권6호
    • /
    • pp.727-731
    • /
    • 2010
  • 최근 모바일 기기의 다양한 센서들을 통하여 데이타를 수집하여 개인의 삶을 기록하는 연구들이 진행 중이다. 효율적인 모바일 라이프로그의 저장과 탐색을 위해 연관 검색이 가능한 모바일 라이프로그 시맨틱 네트워크가 제안되었다. 기존의 시맨틱 네트워크 상의 검색은 텍스트 기반으로 관계를 바탕으로 하는 사용자의 능동적인 연관 검색에 한계가 있었다. 본 논문에서는 모바일 라이프로그의 연관 검색을 위해 검색 과정과 결과를 시각화된 네트워크로 데이타간의 관계를 보여주는 선택 연관 검색과 키워드 연관 검색을 제안한다. 복잡한 시맨틱 네트워크에 대해서 사용자의 이해도를 높이기 위해 의미 추상화를 적용하였다. 실제 모바일 라이프로그 시맨틱 네트워크 데이타를 바탕으로 질의를 해결하는 과정을 기존 연구에서 보였던 텍스트 기반 연관 검색 방법과 비교하고 사용성 평가를 시행함으로 유용성을 입증하였다.

T맵 검색지와 썸트랜드 데이터를 이용한 관광인기도분석: 강원도 춘천을 중심으로 (Analysis of Tourism Popularity Using T-map Search andSome Trend Data: Focusing on Chuncheon-city, Gangwon-province)

  • 김태우;조재희
    • 서비스연구
    • /
    • 제12권1호
    • /
    • pp.25-35
    • /
    • 2022
  • 2020년 1월 국내 최초 환자가 발생한 코로나19(COVID 19)는 다양한 분야에 영향을 끼쳤다. 그중에서도 가장 타격을 받은 곳은 관광 분야라 하겠다. 특히 강원도 지역은 관광 기반의 산업 구조가 지역의 근간을 이루고 있고 관광산업이 소상공인 및 소기업의 주요 소득원이므로 그 피해가 크다. 이와 같은 피해 상황 및 정도를 확인하고자 강원권 지역 중에서 대중적 접근성이 가장 편리하며 서울 및 수도권 등에서 대중교통을 이용하여 당일 관광이 가능하고, 일반적인 이미지가 적은 비용을 사용한 관광이 가능하다고 인식되고 있는 춘천 지역을 대상으로 데이터 분석을 통하여 실증분석을 하였다. 이를 위하여 관광지식정보시스템에서 제공하는 춘천의 방문객 데이터를 기준으로 일반적인 지역 현황을 확인하였고 코로나 이전인 2019년도와 이후인 2020년도의 관심도 확인을 위하여 키워드 수집 전문 기업인 (주)바이브컴퍼니의 웹서비스 썸트랜드에서 수집한 키워드와 차량용 내비게이션 서비스와 통신 서비스 제공을 병행하는 SK텔레콤의 T맵 검색지 데이터를 함께 비교해 봄으로써 춘천에 대한 일반적인 지역 이미지를 분석하였다. 또한 키워드와 T맵 검색지 데이터를 적용한 관광 인기도 지수를 개발하여 2개 연도의 데이터를 비교해 봄으로써 코로나 상황이 춘천 지역 방문객들의 관심도가 실제 방문으로 이어지는 것에 얼마나 영향을 미쳤는지를 데이터 분석적인 접근 방법으로 고찰하였다. 데이터 마트 설계를 거친 후 관광인기도 지수를 적용한 빅데이터 분석 결과를 확인한 바에 의하면, 코로나19 상황은 강원도 춘천 지역 관광 인기도에 미치는 영향이 크지 않다는 것을 확인하였고, 해당 지역이 가지고 있는 지역별 특수성에 기반한 관광지 이미지 등을 확인하였다. 이와 같은 연구 분석 결과가 관광경제정책 입안에 유용한 참고 자료로 활용될 수 있을 것이다.