• Title/Summary/Keyword: 키워드 추출

Search Result 754, Processing Time 0.028 seconds

Document Analysis based Main Requisite Extraction System (문서 분석 기반 주요 요소 추출 시스템)

  • Lee, Jongwon;Yeo, Ilyeon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.401-406
    • /
    • 2019
  • In this paper, we propose a system for analyzing documents in XML format and in reports. The system extracts the paper or reports of keywords, shows them to the user, and then extracts the paragraphs containing the keywords by inputting the keywords that the user wants to search within the document. The system checks the frequency of keywords entered by the user, calculates weights, and removes paragraphs containing only keywords with the lowest weight. Also, we divide the refined paragraphs into 10 regions, calculate the importance of the paragraphs per region, compare the importance of each region, and inform the user of the main region having the highest importance. With these features, the proposed system can provide the main paragraphs with higher compression ratio than analyzing the papers or reports using the existing document analysis system. This will reduce the time required to understand the document.

Analysis and Prediction of Trends for Future Education Reform Centering on the Keyword Extraction from the Research for the Last Two Decades (미래교육 혁신을 위한 트렌드 분석과 예측: 20년간의 문헌 연구 데이터를 기반으로 한 키워드 추출 분석을 중심으로)

  • Jho, Hunkoog
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.156-171
    • /
    • 2021
  • This study aims at investigating the characteristics of trends of future education over time though the literature review and examining the accuracy of the framework for forecasting future education proposed by the previous studies by comparing the outcomes between the literature review and media articles. Thus, this study collects the articles dealing with future education searched from the Web of Science and categorized them into four periods during the new millennium. The new articles from media were selected to find out the present of education so that we can figure out the appropriateness of the proposed framework to predict the future of education. Research findings reveal that gradual tendencies of topics could not be found except teacher education and they are diverse from characteristics of agents (students and teachers) to the curriculum and pedagogical strategies. On the other hand, the results of analysis on the media articles focuses more on the projects launched by the government and the immediate responses to the COVID-19, as well as educational technologies related to big data and artificial intelligence. It is surprising that only a few key words are occupied in the latest articles from the literature review and many of them have not been discussed before. This indicates that the predictive framework is not effective to establish the long-term plan for education due to the uncertainty of educational environment, and thus this study will give some implications for developing the model to forecast the future of education.

Web Document Classification Based on Hangeul Morpheme and Keyword Analyses (한글 형태소 및 키워드 분석에 기반한 웹 문서 분류)

  • Park, Dan-Ho;Choi, Won-Sik;Kim, Hong-Jo;Lee, Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.19D no.4
    • /
    • pp.263-270
    • /
    • 2012
  • With the current development of high speed Internet and massive database technology, the amount of web documents increases rapidly, and thus, classifying those documents automatically is getting important. In this study, we propose an effective method to extract document features based on Hangeul morpheme and keyword analyses, and to classify non-structured documents automatically by predicting subjects of those documents. To extract document features, first, we select terms using a morpheme analyzer, form the keyword set based on term frequency and subject-discriminating power, and perform the scoring for each keyword using the discriminating power. Then, we generate the classification model by utilizing the commercial software that implements the decision tree, neural network, and SVM(support vector machine). Experimental results show that the proposed feature extraction method has achieved considerable performance, i.e., average precision 0.90 and recall 0.84 in case of the decision tree, in classifying the web documents by subjects.

An Efficient Web Search Method Based on a Style-based Keyword Extraction and a Keyword Mining Profile (스타일 기반 키워드 추출 및 키워드 마이닝 프로파일 기반 웹 검색 방법)

  • Joo, Kil-Hong;Lee, Jun-Hwl;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1049-1062
    • /
    • 2004
  • With the popularization of a World Wide Web (WWW), the quantity of web information has been increased. Therefore, an efficient searching system is needed to offer the exact result of diverse Information to user. Due to this reason, it is important to extract and analysis of user requirements in the distributed information environment. The conventional searching method used the only keyword for the web searching. However, the searching method proposed in this paper adds the context information of keyword for the effective searching. In addition, this searching method extracts keywords by the new keyword extraction method proposed in this paper and it executes the web searching based on a keyword mining profile generated by the extracted keywords. Unlike the conventional searching method which searched for information by a representative word, this searching method proposed in this paper is much more efficient and exact. This is because this searching method proposed in this paper is searched by the example based query included content information as well as a representative word. Moreover, this searching method makes a domain keyword list in order to perform search quietly. The domain keyword is a representative word of a special domain. The performance of the proposed algorithm is analyzed by a series of experiments to identify its various characteristic.

Construction of Concept Network Useful for Effective Information Retrieval (효과적인 정보검색을 위한 개념망의 구축)

  • 주성은;구상회
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.295-297
    • /
    • 2002
  • 본 연구에서는 정보 검색의 효과를 향상시키기 위한 방안으로 개념망을 제안한다. 개념망은 주어진 문서의 집합에서 제시된 주요 개념을 추출하고, 추출된 개념들 사이의 관련성을 분석하여, 관련성이 높은 개념 사이에는 링크를 설정함으로써 개념을 노드로 하는 네트워크를 구성한 것이다. 개념 추출과 링크 설정은 문서에 출현하는 명사의 출현 빈도를 근거로 하였다. 사용자가 정보검색을 위하여 키워드를 입력하면 본 시스템은 입력된 키워드를 중심으로 구축된 개념망을 제시한다. 사용자는 제시된 개념망을 조사함으로써, 자신이 입력한 단어가 검색하고자 하는 목표개념을 적절히 반영한 단어인지 확인할 수 있고, 새로운 검색어를 추가하거나 기존의 것을 수정함으로써 검색의 효과를 향상시킬 수 있다.

  • PDF

A Study on the Research Trend in the Dyslexia and Learning Disability Trough a Keyword Network Analysis (키워드 네트워크 분석을 통한 난독증과 학습장애 관련 연구 동향 분석)

  • Lee, Woo-Jin;Kim, Tae-Gang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2019
  • The present study was performed to investigate the general research trends of dyslexia and learning disability to explore the centrality of related variables though analysis of keyword networks. Data were collected from ten years articles research information sharing service(RISS) which is provided by korea education and research information service(KERIS). The research subjects selected for the analysis were keyword cleansing work, extraction major keyword using KrKwic program and using NodeXL program to Visualize the center of connection between keyword. The results of this were as follows. First, totally 72 of keyword were extracted from keyword cleansing process and among those keyword. major keywords included learning disability, dyslexia, RTI. Second, analysis of the betweenness centrality of dyslexia and learing disabilities shows that learning disabilities are a key word that has been addressed in the study of dyslexia and learning disabilities in korea. The results of these studies suggest a method of analyzing trends in qualitative and qualitative analysis in relation to dyslexia and learning disorder.

Automatic Creation of Artificial Intelligence Meeting Minutes System using Korean Keyword Extraction (인공지능기반의 키워드 중심 회의록 자동 생성 시스템)

  • Kang, SuJi;Yoo, Jinjoo;Lee, Taerim;Lee, Hayeon;Lim, Yangmi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.299-300
    • /
    • 2021
  • 비대면 시대로 인한 화상 회의의 중요성이 높아졌다. 하지만 현재까지도 회의기록의 문서화 작업은 수작업으로 이루어지고 있어 시간과 인적자원이 많이 소모되고 있다. 본 논문은 기존 수작업으로 진행되는 회의 문서화 과정의 문제점을 개선하고자 한국어 키워드 추출을 활용한 인공지능 회의록 자동 생성 시스템을 제안한다. 회의 음성 파일을 기반으로 STT 기술을 활용한 회의 전문을 자동 생성하고 전문에 KR-WordRank 알고리즘을 적용해 키워드를 추출, Summary API를 사용하여 요약본을 생성한다. 최종 결과로 회의 전문과 키워드, 요약본이 담긴 PDF 형식의 회의록을 사용자에게 제공하여, 수기 회의록 작성 시 들이는 시간적, 인적 비용 절감을 돕는다.

  • PDF

Text mining based GPT utilization technique for research trend analysis (연구 동향 분석을 위한 텍스트 마이닝 기반 GPT 활용 기법)

  • Jeong-Hoon Ha;Bong-Jun Choi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.369-370
    • /
    • 2023
  • 새로운 연구를 시작하기 위해서는 과거의 연구 동향을 분석해야 한다. 이를 위해 많은 양의 과거 연구 데이터를 조사해야 하는데, 모든 데이터를 직접 분류하는 방법은 많은 시간과 노력이 필요하기 때문에 비효율적이며, 텍스트 마이닝 기법을 활용한 키워드분석만으로는 연구 동향을 이해하기에 어려움이 존재한다. 이러한 전통적인 키워드 추출 방법의 한계점을 보완하기 위해 본 논문에서는 텍스트 마이닝 기반 GPT 활용 기법을 제안한다. 본 연구에서는 특정 도메인에 대해 텍스트 마이닝 기법을 활용하여 키워드를 추출하고, 이러한 키워드를 해당 도메인의 데이터로 미세 조정(fine-tuning)된 GPT의 입력으로 사용한다. GPT 결과로 생성된 문장을 텍스트 마이닝으로 나온 결과와 비교 분석한다. 이를 통해 연구 분야의 동향 분석을 보다 쉽게 할 수 있을 것으로 기대된다.

  • PDF

Recruitment matching mentoring system using Jaccard Similarity (자카드 유사도 기법을 이용한 채용 매칭 멘토링 시스템)

  • Seunghun Jang;Bong-Jun Choi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.699-700
    • /
    • 2023
  • 최근 국내 기업에서는 블라인트 테스트나 포트폴리오와 같은 자료를 활용하여 채용하는 추세이다. 지원자마다 개인의 역량이 다를 뿐만 아니라 기업에서 요구하는 기술/경험, 지원 자격, 특정 기술에 대한 경험을 요구한다. 따라서 본 논문에서는 국내 기업의 채용 공고에 기재된 지원 자격, 우대 기술, 우대 사항 등의 데이터와 지원자의 개인 역량(기술 스택, 전공 역량, 진행 프로젝트 등) 데이터를 활용하여 키워드를 추출한다. 지원자와 기업이 입력한 데이터를 통해 추출한 키워드들을 두 개의 집합으로 나눈 뒤 각각의 키워드를 할당한다. 할당받은 집합들을 비교하여 지원자의 정보가 기업의 채용 조건에 얼마나 부합하는지 계산한 후, 해당확률을 지원자에게 제공하는 방식의 시스템이다.

  • PDF

Academic Paper Keyword Extracting Algorithm for Efficient Search and Development of Research Searching System (효율적인 검색을 위한 논문 키워드 추출 알고리즘 설계 및 연구 검색 시스템 개발)

  • Lee, Jong-Hyun;Lee, Won-Joon;Kim, Ho-Sook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.463-466
    • /
    • 2018
  • 본 연구는 논문을 기반으로 연구의 주요 키워드를 추출하는 알고리즘을 설계하고 이를 적용한 연구 검색 시스템을 개발하여 효율적인 검색 환경을 제공하는 것을 목표로 한다. 논문 키워드 추출 알고리즘은 논문 내에서의 단어 출현 빈도와 PMI 지표를 바탕으로 정의한 단어간 연관성 K(x,y)을 기반으로 설계하였다. 연구 검색 시스템은 고등학교 R&E 등 제한적인 환경에서 이루어지는 연구들의 선행 연구 자료 부족을 해결하는 것을 주 목적으로 한다. 또한, 구현한 연구 검색 시스템에 제안된 알고리즘을 적용하여 보다 정확하고 직관적인 검색 환경을 제공할 수 있었으며, 추후 연구 자료가 추가됨에 따라 그 가치가 높아질 것으로 전망한다.