• Title/Summary/Keyword: 클로퍼

Search Result 42, Processing Time 0.032 seconds

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Analysis of Archaeal Community in Autotrophic Perchlorate-degrading Enrichment Culture (독립영양 방식으로 퍼클로레이트를 분해하는 농화배양 내 고세균 군집 분석)

  • Kim, Young-Hwa;Do, Sanghyun;So, Hyunseung;Been, Junwon;Sung, Haechan;Ji, Sungchan;Son, Myunghwa;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Perchlorate ($ClO_4^-$) is an emerging contaminant detected in soil, groundwater, and surface water. Previous study revealed bacterial community in the enrichment culture tdegraded perchlorate using elemental sulfur as an electron donor. Quantitative and qualitative molecular methods were employed in this study to investigate archaeal community in the enrichment culture. Real-time qPCR showed that archaeal 16S rRNA gene copy number in the culture was about 1.5% of bacterial 16S rRNA gene copy number. This suggested that less archaea were adapted to the environment of the enrichment culture and bacteria were dominant. DGGE banding pattern revealed that archaeal community profile of the enrichment culture was different from that of the activated sludge used as an inoculum for the enrichment culture. The most dominant DGGE band of the enrichment culture was affiliated with Methanococci. Further research is necessary to investigate metabolic role of the dominant archaeal population to better understand microbial community in the perchlorate-reducing enrichment culture.

Prevention of Candida albicans infection in dental polishing lathe by chlorhexidine (클로르헥시딘을 이용한 치과기공용 연마기 캔디다균의 감염방지)

  • Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.274-279
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the transmission of candida in denture by dental polishing lathe. Materials and Methods: Maxillary complete dentures made from the same model were infected with Candida albicans. Polishing wheels were keep in various chlorhexidine solution and distilled water for an hour. The infected dentures were polished by prepared dental polishing lathe with sterile pumice and distilled water. And then sterile maxillary complete dentures were polished with same method. Polishing surface was wiped with a cotton swab and the sample was regrown for checking Candida albicans. Results: All polishing wheel with chlorhexidine resist fungal infection. But the polishing wheel with distilled water is infected with Candida albicans. Conclusion: A chlorhexidine is highly efficient in fungal infection prevention on dental polishing lathe.

Formation Mechanism of Chlorate ($ClO_3\;^-$) by Electrochemical Process (전기화학적 공정에 의한 클로레이트의 생성메커니즘)

  • Baek, Ko-Woon;Jung, Yeon-Jung;Kang, Joon-Wun;Oh, Byung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.627-634
    • /
    • 2009
  • This study was done to find out the formation mechanism of chlorate by electrochemical process using chloride ion ($Cl^-$) as an electrolyte. Firstly, the effective factors such as pH and initial chloride concentration were figured out to see the formation property of chlorate during electrolysis. And the relation of free chlorine, and mixed oxidants such as OH radical and ozone with chlorate were estimated to concretize the formation mechanism. As a result, it was found that the major reaction of chlorate formation would be electrochemical reaction with free chlorine, and also the direct oxidation of chloride ion and the reaction by OH radical were participated in the formation of chlorate. Moreover, it was observed that formed chlorate was oxidized to perchlorate. Lastly, the optimum condition was recommended by comparing free chlorine with chlorate concentration during the electrochemical process with the different electrode separation.

Autotrophic Perchlorate-Removal Using Zero-Valent Iron and Activated Sludge: Batch Test (영가철과 활성슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Ahn, Yeong-Hee;Ha, Myoung-Gyu
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.444-450
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Autotrophic perchlorate-reducing bacteria (PRB) use hydrogen gas ($H_2$) as an electron donor to remove perchlorate. Since iron corrosion can produce $H_2$, feasibility of autotrophic perchlorate-removal using zero-valent iron (ZVI) was examined in this study using activated sludge that is easily available from a wastewater treatment plant. Batch test showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of ZVI. The perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of iron particles used for the autotrophic perchlorate-removal, suggesting that iron particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of biofilm sample obtained from the ZVI-added enrichment culture used for $ClO_4^-$-degradation. A major band of the biofilm sample was most closely related to the class Clostridia.

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge (원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성)

  • Han, Kyoung-Rim;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.676-681
    • /
    • 2013
  • Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

Photoelectrochemical Degradation of Perchlorate Ions by TiO2 (산화티탄의 광전기화학 특성을 이용한 퍼클로레이트 이온 제거)

  • Min, Hyung-Seob;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.432-437
    • /
    • 2008
  • Titanium oxide films and powders are attached onto carbon cloths via RF reactive sputtering and an epoxy resin mixture, respectively. $TiO_2$/carbon composite materials were used to investigate the photoelectrochemical degradation of perchlorate ions in water. The energy band gaps of the RF-sputtered $TiO_2$ thin films ranged from 3.35-3.44 eV. A photocurrent of the powdered $TiO_2$ as illuminated by ultra-violet light for 30 min. was $2.79\;mA/cm^2$. Perchlorate ions in water were shown to be degradable by a UV-illuminated $TiO_2$ powder/carbon/Nafion/carbon composite.

Bioreduction Characteristics of Perchlorate in Raw Sewage (생하수의 퍼클로레이트 생분해 특성)

  • Hong, Seong Hwan;Choi, Hyeoksun
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • This research was done to investigate the bioreduction characteristics of perchlorate in raw sewage because sewage contains biodegradable organics and various microorganisms for biological perchlorate reduction. Two different types of sewage were tested for biological perchlorate reduction in the flasks. Sewage A was collected from the screening equipment and sewage B was collected from the primary settlement in the municipal wastewater treatment facilities. Perchlorate was completely reduced within 72hours from 8.2 and 10.4 mg/L in the sewage A and sewage B flask tests. When perchlorate and nitrate were added in sewage A, both perchlorate and nitrate were reduced. However, perchlorate and nitrate removal rates were 9.3% and 64.0% at 72hours in sewage B. Perchlorate reduction was significantly inhibited by high salinity(0.5% NaCl) in the sewage A and B. These results showed the sewage has potential for the biological perchlorate reduction in the sewage pipe.

Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process (NF/RO 멤브레인 공정을 적용한 고체추진제에서 추출된 암모늄 퍼클로레이트 (AP) 처리 연구)

  • Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Han, Jonghun;Her, Namguk
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Ammonium perchlorate (AP) is primarily derived from the process of liquid incineration treatment when dismantling a solid rocket propellant. A series of batch dead-end nanofiltration (NF) and reverse osmosis (RO) membrane experiments were conducted to explore the retention mechanisms of AP under various hydrodynamic and solution conditions. Low levels of silicate type of siloxane had been detected through the GC/MS and FTIR analysis of liquid solutions extracted from solid ammonium perchlorate composite propellant (APCP). It is indicated that NF/RO membranes fouling in the presence of APCP was mainly attributed to the AP interactions because the concentration of silicate type of siloxane was negligible compared to that of AP. The osmotic pressure of AP was presumably resulted in the flux declines ranging from 13 to 17% in the case of the application of low-pressure (551 and 896 kPa for NF and RO) compared to those in application of high-pressure. The retention of AP by NF/RO membranes significantly varied from approximately 10 to 70% for NF and 26 to 87% for RO, depending on the operating and solution water chemistry conditions. The results suggested that retention efficiency of AP was fairly increased by reducing concentration polarization (i.e. application of low-pressure and stirring speed of 600 rpm) and increasing the pH of a solution. The result of this study was also consistent with the previous modeling of 'solute mass transfer of NF/RO membranes' and demonstrated that hydrodynamic and solution water chemistry conditions are to be a key factor in the retention of AP by NF/RO membranes.